Skip to main content
Log in

Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Using activating flux for gas tungsten arc welding (GTAW) to improve penetration capability is a well-established technique. Argon is an inert gas and the one most widely used as a shielding gas for GTAW. For the most austenitic stainless steels, pure argon does not provide adequate weld penetration. Argon–hydrogen mixtures give a more even heat input to the workpiece, increasing the arc voltage, which tends to increase the volume of molten material in the weld pool as well as the weld depth-to-width ratio. Great interest has been shown in the interaction between activating flux and the hydrogen concentration in an argon-based shielding gas. In this study, the weld morphology, the arc profile, the retained delta ferrite content, the angular distortion, and the microstructures were examined. The application of an activating flux combining argon and hydrogen for GTAW is important in the industry. The results of this study are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Huang, D. Fan, and Q.H. Fan: Front. Mech. Eng. China, 2007, vol. 2, pp. 442–47.

    Article  ADS  Google Scholar 

  2. J. Niagaj: Weld. Int., 2006, vol. 20, pp. 516–20.

    Article  Google Scholar 

  3. A.R. Loureiro, B.F.O. Costa, A.C. Batista, and A. Rodrigues: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 315–20.

    Article  CAS  Google Scholar 

  4. P.J. Modenesi, E.R. Apolinário, and I.M. Pereira: J. Mater. Process. Technol., 2000, vol. 99, pp. 260–65.

    Article  Google Scholar 

  5. Q.M. Li, X.H. Wang, Z.D. Zou, and J. Wu: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 486–90.

    Article  Google Scholar 

  6. L.M. Liu, Z.D. Zhang, G. Song, and L. Wang: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 649–58.

    Article  CAS  ADS  Google Scholar 

  7. S.P. Lu, H. Fujii, H. Sugiyama, and K. Nogi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1901–07.

    Article  CAS  ADS  Google Scholar 

  8. J.J. Lowke, M. Tanaka, and M. Ushio: J. Phys. D: Appl. Phys., 2005, vol. 38, pp. 3438–45.

    Article  CAS  ADS  Google Scholar 

  9. J.A. Lambert: Weld. J., 1991, vol. 70, pp. 41–52.

    CAS  ADS  Google Scholar 

  10. S.M. Gurevich, V.N. Zamkov, and N.A. Kushnirenko: Avt. Svarka, 1965, vol. 9, pp. 1–4.

    Google Scholar 

  11. M.M. Savitskii, B.N. Kushnirenko, and A.F. Lupan: Avt. Svarka, 1981, vol. 2, pp. 18–21.

    Google Scholar 

  12. J. Niagaj: Weld. Int., 2003, vol. 17, pp. 257–61.

    Article  Google Scholar 

  13. D. Fan, R. Zhang, Y. Gu, and M. Ushio: Trans. JWRI, 2001, vol. 30, pp. 35–40.

    CAS  Google Scholar 

  14. M. Tanaka, T. Shimizu, H. Terasaki, M. Ushio, F. Koshiishi, and C.L. Yang: Sci. Technol. Weld. Join., 2000, vol. 5, pp. 397–402.

    Article  CAS  Google Scholar 

  15. M. Kuo, Z. Sun and D. Pan: Sci. Technol. Weld. Join., 2001, vol. 6, pp. 17–22.

    Article  Google Scholar 

  16. R.H. Zhang, D. Pan, and S. Katayama: Trans. JWRI, 2006, vol. 35, pp. 19–22.

    Google Scholar 

  17. H. Sun, G. Song, and L.F. Zhang: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 305–11.

    Article  CAS  Google Scholar 

  18. T. Paskell, C. Lundin, and H. Castner: Weld. J., 1997, vol. 76, pp. 57–62.

    CAS  Google Scholar 

  19. S. Leconte, P. Paillard, P. Chapelle, G. Henrion, and J. Saindrenan: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 389–97.

    Article  CAS  Google Scholar 

  20. M. Marya and G.R. Edwards: Weld. J., 2002, vol. 81, pp. 291–98.

    Google Scholar 

  21. L.M. Liu, D.H. Cai, and Z.D. Zhang: Scripta Mater., 2007, vol. 57, pp. 695–98.

    Article  CAS  Google Scholar 

  22. H.Y. Huang: Mater. Desig., 2009, vol. 30, pp. 2404–09.

    Article  CAS  Google Scholar 

  23. J. Tuŝek and M. Suban: Int. J. Hydrogen Energ., 2000, vol. 25, pp. 369–76.

    Article  Google Scholar 

  24. A. Durgutlu: Mater. Desig., 2004, vol. 25, pp. 19–23.

    Article  CAS  Google Scholar 

  25. P.C.J. Anderson and R. Wiktorowicz: Weld. Met. Fabr., 1996, vol. 64, pp. 108–09.

    CAS  Google Scholar 

  26. M. Onsoien, R. Peters, D.L. Olson, and S. Liu: Weld. J., 1995, vol. 74, pp. 10s-15s.

    Google Scholar 

  27. J.J. Lowke, M. Richard, H. Jawad, and M.B. Anthony: IEEE Trans. Plasma Sci., 1997, vol. 25, pp. 925–30.

    Article  CAS  ADS  Google Scholar 

  28. A.B. Murphy, M. Tanaka, S. Tashiro, T. Sato, and J.J. Lowke: J. Phys. D: Appl. Phys., 2009, vol. 42, pp. 115205.

    Article  ADS  Google Scholar 

  29. M. Menzel: Weld. Int., 2003, vol. 17, pp. 262–64.

    Article  Google Scholar 

  30. C. Limmaneevichitr and S. Kou: Weld. J., 2000, vol. 79, pp. 324–30.

    Google Scholar 

  31. Y.L. Xu, Z.B. Dong, Y.H. Wei, and C.L. Yang: Theor. Appl. Fract. Mech., 2007, vol. 48, pp. 178–86.

    Article  CAS  Google Scholar 

  32. H. Fujii, T. Sato, S.P. Lu, and K. Nogi: Mate. Sci. and Eng. A, 2008, vol. 495, pp. 296–303.

    Article  Google Scholar 

  33. D.S. Howse and W. Lucas: Sci. Technol. Weld. Join., 2000, vol. 5, pp. 189–93.

    Article  CAS  Google Scholar 

  34. S. Sire and S. Marya: C. R. Mécanique, 2002, vol. 330, pp. 83–89.

    Article  CAS  Google Scholar 

  35. H. Jamshidi Aval, A. Farzadi, S. Serajzadeh, and A.H. Kokabi: Int. J. Adv. Manuf. Technol., 2008, vol. 41, pp. 1043–51.

    Google Scholar 

  36. J.M. Vitek, S.A. David, and C.R. Hinman: Weld. J., 2003, vol. 82, pp. 43s-50s.

    Google Scholar 

  37. K.J. Son, Y.S. Yang, and H.G. Beom: Sci. Technol. Weld. Join., 2000, vol. 5, pp. 245–49.

    Article  Google Scholar 

  38. J.U. Park, H.W. Lee, and H.S. Bang: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 232–39.

    Article  CAS  Google Scholar 

  39. P. Michaleris and A. DeBiccari: Weld. J., 1997, vol. 76, pp. 172–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Her-Yueh Huang.

Additional information

Manuscript submitted February 3, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HY. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding. Metall Mater Trans A 41, 2829–2835 (2010). https://doi.org/10.1007/s11661-010-0361-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0361-9

Keywords

Navigation