Skip to main content
Log in

Diffusion Bonding of γ(TiAl) Alloys: Influence of Composition, Microstructure, and Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The metallurgical factors governing the solid-state diffusion bonding of TiAl alloys have been characterized using scanning electron microscopy together with energy-dispersive X-ray (EDX) spectroscopy and electron backscattered diffraction (EBSD) analysis. The investigations were performed on TiAl alloys with various compositions and microstructures, which had been thoroughly mechanically characterized. The process zone of the bonds typically consists of a fine-grained layer of α 2(Ti3Al) phase at the former contact plane, followed by relatively large, defect-free γ(TiAl) grains and a region of deformed parent material. The evolution of the process zone involves phase transformation and recrystallization processes, which are triggered by asperity deformation at the contact plane and the unavoidable contamination of the diffusion couple with oxygen and nitrogen. The structural details depend on the alloy composition and the bonding conditions. In the final section of the article, technical aspects, including the tensile strength of diffusion bonds, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Y.-W. Kim and D.M. Dimiduk: in Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 531–43.

    Google Scholar 

  2. Y. Nakao, K. Shinozaki, and M. Hamada: ISIJ Int., 1991, vol. 10, pp. 1260–66.

    Article  Google Scholar 

  3. P. Yan and E.R. Wallach: Intermetallics, 1993, vol. 1, pp. 83–97.

    Article  CAS  Google Scholar 

  4. W. Glatz and H. Clemens: Intermetallics, 1997, vol. 5, pp. 415–23.

    Article  CAS  Google Scholar 

  5. G. Cam, H. Clemens, R. Gerling, and M. Kocak: Intermetallics, 1999, vol. 7, pp. 1025–31.

    Article  CAS  Google Scholar 

  6. M. Holmquist, V. Recina, J. Ockborn, B. Pettersson, and E. Zumalde: Scripta Mater., 1998, vol. 39, pp. 1101–06.

    Article  CAS  Google Scholar 

  7. A. Hellwig, M. Palm, and G. Inden: Intermetallics, 1998, vol. 6, pp. 79–94.

    Article  CAS  Google Scholar 

  8. R. Kainuma, Y. Fujita, M. Mitsui, I. Ohnuma, and K. Ishida: Intermetallics, 2000, vol. 8, pp. 855–67.

    Article  CAS  Google Scholar 

  9. H. Nickel, N. Zheng, A. Elschner, and W. Quadakkers: Mikrochim. Acta, 1995, vol. 119, pp. 23–39.

    CAS  Google Scholar 

  10. J. Paul, F. Appel, and R. Wagner: Acta Mater., 1998, vol. 46, pp. 1075–85.

    Article  CAS  Google Scholar 

  11. F. Appel, U. Lorenz, M. Oehring, U. Sparka, and R. Wagner: Mater. Sci. Eng., A, 1997, vol. 233, pp. 1–14.

    Article  Google Scholar 

  12. G. Schöck: Phys. Status Solidi, 1965, vol. 8, pp. 499–507.

    Article  Google Scholar 

  13. A.G. Evans and R.D. Rawlings: Phys. Status Solidi, 1965, vol. 34, pp. 9–31.

    Article  Google Scholar 

  14. R. Hoppe and F. Appel: 2009, unpublished research.

  15. Y. Mishin and Chr. Herzig: Acta Mater., 2000, vol. 48, pp. 589–623.

    Article  CAS  Google Scholar 

  16. R.E. Schafrik: Metall. Trans. A, 1977, vol. 8A, pp. 1003–06.

    ADS  CAS  Google Scholar 

  17. R.M. Imayev, V.M. Imayev, M. Oehring, and F. Appel: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 859–67.

    CAS  Google Scholar 

  18. F.D. Fischer, H. Clemens, Th. Schaden, and F. Appel: Int. J. Mater. Res., 2007, vol. 98, pp. 1041–46.

    CAS  Google Scholar 

  19. M.H. Yoo and C.L. Fu: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 49–63.

    Article  CAS  Google Scholar 

  20. F. Appel and R. Wagner: Mater. Sci. Eng., R, 1998, vol. 22, pp. 187–268.

    Article  Google Scholar 

  21. G. Hug, A. Loiseau, and P. Veyssière: Philos. Mag. A, 1988, vol. 57, pp. 499–523.

    Article  ADS  CAS  Google Scholar 

  22. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing, Malabar, FL, 1992, pp. 487–638.

    Google Scholar 

  23. H. Inui, M. Matsumoro, D.-H. Wu, and M. Yamaguchi: Philos. Mag. A, 1997, vol. 75, pp. 395–423.

    Article  ADS  CAS  Google Scholar 

  24. P. Shang, T.T. Cheng, and M. Aindow: Philos. Mag. A, 1999, vol. 79, p. 2553.

    Article  ADS  CAS  Google Scholar 

  25. F. Appel: Mater. Sci. Eng., A, 2001, vol. 317, pp. 115–27.

    Article  Google Scholar 

  26. U. Fröbel and F. Appel: Acta Mater., 2002, vol. 50, pp. 3693–3707.

    Article  Google Scholar 

  27. T. Fujiwara, A. Nakamura, M. Hosomi, S.R. Nishitani, Y. Shirai, and M. Yamaguchi: Philos. Mag. A, 1990, vol. 61, pp. 591–606.

    Article  ADS  CAS  Google Scholar 

  28. Y. Umakoshi, T. Nakano, and T. Yamane: Mater. Sci. Eng., A, 1992, vol. 152, pp. 81–88.

    Article  Google Scholar 

  29. J. Beddoes, W. Wallace, and L. Zhao: Int. Mater. Rev., 1995, vol. 40, pp. 197–217.

    CAS  Google Scholar 

  30. R.W. Hayes and P.L. Martin: Acta Metall. Mater., 1995, vol. 43, pp. 2761–72.

    Article  CAS  Google Scholar 

  31. J. Triantafillou, J. Beddoes, L. Zhao, and W. Wallace: Scripta Metall. Mater., 1994, vol. 31, pp. 1387–92.

    Article  CAS  Google Scholar 

  32. R.W. Hayes and P.A. McQuay: Scripta Metall. Mater., 1994, vol. 30, pp. 259–64.

    Article  CAS  Google Scholar 

  33. J. Beddoes, L. Zhao, J. Triantafillou, P. Au, and W. Wallace: in Gamma Titanium Aluminides, Y.-W. Kim, M. Yamaguchi, and R. Wagner, eds., TMS, Warrendale, PA, 1995, pp. 959–66.

    Google Scholar 

  34. U.R. Kattner, J.C. Liu, and Y.A. Chang: Metall. Trans. A, 1992, vol. 23A, pp. 2081–90.

    ADS  CAS  Google Scholar 

  35. S.P. Godfrey, P.L. Threadgill, and M. Strangwood: High-Temperature Ordered Intermetallic Alloys VI, Materials Research Society Symposium Proceedings, J.A. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., MRS, Pittsburgh, PA, 1995, vol. 364, pp. 793–98.

  36. H. Inui, Y. Toda, Y. Shirai, and M. Yamaguchi: Philos. Mag. A, 1994, vol. 69, pp. 1161–77.

    Article  ADS  CAS  Google Scholar 

  37. Y. Minonishi: Mater. Sci. Eng., A, 1995, vols. 192–193, pp. 830–36.

    Google Scholar 

  38. C. Buque and F. Appel: Int. J. Mater. Res., 2002, vols. 2002–2008, pp. 784–89.

    Google Scholar 

  39. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, United Kingdom, 1995.

    Google Scholar 

  40. B.A. Simkin and M.A. Crimp: High-Temperature Ordered Intermetallic Alloys VII, Materials Research Society Symposium Proceedings, C.C. Koch, C.T. Liu, N.S. Stoloff, and A. Wanner, eds., MRS, Pittsburgh, PA, 1997, vol. 460, pp. 387–92.

  41. P.M. Hazzledine: Intermetallics, 1998, vol. 6, pp. 673–77.

    Article  CAS  Google Scholar 

  42. V. Paidar: Interface Sci., 2002, vol. 10, pp. 43–49.

    Article  CAS  Google Scholar 

  43. R. Ørsund and E. Nes: Scripta Metall., 1989, vol. 23, pp. 1187–92.

    Article  Google Scholar 

  44. A.R. Jones, B. Ralph, and N. Hansen: Proc. R. Soc. London, Ser. A, 1979, vol. 368, pp. 345–57.

    Article  ADS  CAS  Google Scholar 

  45. A. Menand, A. Huguet, and A. Nérac-Partaix: Acta Mater., 1996, vol. 44, pp. 4729–37.

    Article  CAS  Google Scholar 

  46. G.L. Chen, W.J. Zhang, Z.C. Liu, S.J. Li, and Y.-W. Kim: in Gamma Titanium Aluminides 1999, Y.-W. Kim, M.H. Loretto, and D.M. Dimiduk, eds., TMS, Warrendale, PA, 1999, pp. 371–80.

    Google Scholar 

  47. U. Christoph, F. Appel, and R. Wagner: Mater. Sci. Eng., A, 1997, vols. 239–240, pp. 39–45.

    Google Scholar 

  48. F. Appel: Philos. Mag. A, 2005, vol. 85, pp. 205–31.

    Article  ADS  CAS  Google Scholar 

  49. A. Denquin and S. Naka: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale PA, 1995, pp.141–48.

    Google Scholar 

  50. F. Appel, M. Oehring, and R. Wagner: Intermetallics, 2000, vol. 8, pp. 1283–1312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Appel.

Additional information

Manuscript submitted September 29, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, D., Appel, F. Diffusion Bonding of γ(TiAl) Alloys: Influence of Composition, Microstructure, and Mechanical Properties. Metall Mater Trans A 40, 1881–1902 (2009). https://doi.org/10.1007/s11661-009-9878-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9878-1

Keywords

Navigation