Skip to main content
Log in

A microstructure-based fatigue-crack-initiation model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents results on the development of a microstructure-based fatigue-crack-initiation model which includes explicit crack-size and microstructure-scale parameters. The current status of microstructure-based fatigue-crack-initiation models is briefly reviewed first. Tanaka and Mura’s models for crack initiation at slipbands and inclusions are then extended to include crack size and relevant microstructural parameters in the response equations. The microstructure-based model for crack initiation at slipbands is applied to predicting the crack size at initiation, small-crack behavior, and notch fatigue in structural alloys. The calculated results are compared against the experimental data for steels and Al-, Ti-, and Ni-based alloys from the literature to assess the range of predictability and accuracy of the fatigue-crack-initiation model. The applicability of the proposed model for treating variability in fatigue-crack-initiation life due to variations in the microstructure is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tanaka and T. Mura: ASME J. Appl. Mech., 1981, vol. 48, pp. 97–103.

    Article  Google Scholar 

  2. K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–23.

    CAS  Google Scholar 

  3. B.A. Cowles: Mater. Sci. Eng., 1988, vol. A103, pp. 63–69.

    CAS  Google Scholar 

  4. J.-P. Bailon and S.D. Antolovich: in Fatigue Mechanisms: Advances in Quantitative Measurements of Physical Damage, ASTM STP 811, J. Lankford, D.L. Davidson, W.L. Morris, and R.P. Wei, eds., ASTM, Philadelphia, PA, 1983, pp. 313–49.

    Google Scholar 

  5. K.S. Chan: Metall. Trans. A, 1993, vol. 24A, pp. 2473–86.

    CAS  Google Scholar 

  6. K.S. Chan and T.-Y. Torng: ASME Trans., J. Eng. Mater. Technol., 1996, vol. 118, pp. 379–86.

    CAS  Google Scholar 

  7. R. Tyron and T.A. Cruse: ASME J. Eng. Mater. Technol., 1997, vol. 119, pp. 65–70.

    Google Scholar 

  8. G. Venkataraman, Y.W. Chung, and T. Mura: Acta Metall. Mater., 1991, vol. 39, pp. 2621–29.

    Article  CAS  Google Scholar 

  9. G. Venkataraman, Y.W. Chung, and T. Mura: Acta Metall. Mater., 1991, vol. 39, pp. 2631–38.

    Article  CAS  Google Scholar 

  10. M.R. Mitchell: in Fatigue and Microstructure, M. Meshii, ed., ASM, Metals Park, OH, 1978, pp. 385–437.

    Google Scholar 

  11. L.F. Coffin, Jr.: Trans. ASME, 1954, vol. 76, pp. 931–50.

    CAS  Google Scholar 

  12. S.S. Manson and M.H. Hirschberg: in Fatigue: An Inter-Disciplinary Approach, Syracuse University, Syracuse, NY, 1964, pp. 133–78.

    Google Scholar 

  13. N. Thompson, N.J. Wadsworth, and N. Louat: Phil. Mag., 1956, vol. 1, pp. 113–26.

    CAS  Google Scholar 

  14. J.C. Grosskreutz: in Metal Fatigue Damage—Mechanism, Detection, Avoidance, and Repair, ASTM STP 495, S.S. Manson, ed., ASTM, Philadelphia, PA, 1971, pp. 5–60.

    Google Scholar 

  15. C. Laird: in Fatigue and Microstructure, M. Meshii, ed., ASM, Metals Park, OH, 1978, pp. 149–203.

    Google Scholar 

  16. M.E. Fine and R.O. Ritchie: in Fatigue and Microstructure, M. Meshii, ed., ASM, Metals Park, OH, 1978, pp. 245–78.

    Google Scholar 

  17. L. Remy: in Fatigue 84, C.J. Beevers, ed., EMAS, Warley, United Kingdom, 1984, vol. I, pp. 15–30.

    Google Scholar 

  18. A.S. Cheng and C. Laird: Fat. Fract. Eng. Mater. Struct., 1981, vol. 4, pp. 343–53.

    Article  CAS  Google Scholar 

  19. A. Saxena and S.D. Antolovich: Metall. Trans. A, 1975, vol. 6A, pp. 1809–28.

    CAS  Google Scholar 

  20. K. Tanaka and T. Mura: Mech. Mater., 1981, vol. 1, pp. 63–73.

    Article  Google Scholar 

  21. M.R. Lin, M.E. Fine, and T. Mura: Acta Metall., 1986, vol. 34, pp. 619–28.

    Article  CAS  Google Scholar 

  22. G. Venkataraman, Y.-W. Chung, Y. Nakasone, and T. Mura: Acta Metall. Mater., 1990, vol. 38, pp. 31–40.

    Article  CAS  Google Scholar 

  23. T. Mura and Y. Nakasone: J. Appl. Mech., 1990, vol. 57, pp. 1–6.

    Google Scholar 

  24. T. Mura: Mater. Sci. Eng., 1994, vol. A176, pp. 61–70.

    Google Scholar 

  25. K.S. Chan: Scripta Metall. Mater., 1995, vol. 32 (2), pp. 235–40.

    Article  CAS  Google Scholar 

  26. R. Chang, W.L. Morris, and O. Buck: Scripta Metall., 1979, vol. 13, pp. 191–94.

    Article  Google Scholar 

  27. C. Ihara and T. Tanaka: Fat. Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 375–80.

    Article  Google Scholar 

  28. S.E. Harvey, P.G. Marsh, and W.W. Gerberich: Acta Metall. Mater., 1994, vol. 42, pp. 3493–3502.

    Article  CAS  Google Scholar 

  29. Isomoto and N. Stoloff: Mater. Sci., 1990, vol. A124, pp. 171–81.

    CAS  Google Scholar 

  30. W. Wei, H. Flöge, and E.E. Affeldt: Scripta Metall. Mater., 1991, vol. 25, pp. 1757–61.

    Article  CAS  Google Scholar 

  31. N. Dowling: Fat. Eng. Mater. Struct., 1979, vol. 2, pp. 129–38.

    Article  Google Scholar 

  32. S. Taira, K. Tanaka, and M. Hoshina: Fatigue Mechanisms, ASTM STP 675, ASTM, Philadelphia, PA, 1979, pp. 135–73.

    Google Scholar 

  33. R.S. Bellows: Improved High Cycle Fatigue Life Prediction, Final Report No. F33615-96-C-5269, University of Dayton Research Institute, Dayton, OH, 2001.

    Google Scholar 

  34. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 79–90.

    CAS  Google Scholar 

  35. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 73–87.

    Article  CAS  Google Scholar 

  36. J.M. Larsen: Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, unpublished research, 2001.

  37. E.A. Starke, Jr. and G. Lütjering: in Fatigue and Microstructure, M. Meshii, ed., ASM, Metals Park, OH, 1978, pp. 205–43.

    Google Scholar 

  38. L. Jiang, C.R. Brooks, P.K. Liaw, and D.L. Klarstrom: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowan, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, Warrendale, PA, 2000, pp. 583–91.

    Google Scholar 

  39. W. Hessler, H. Müllner, B. Weiss, and R. Sticker: Met. Sci., 1981, vol. 15, pp. 235–40.

    Google Scholar 

  40. S. Usami: in Small Fatigue Crack, R.O. Ritchie and J. Lankford, eds., TMS, Warrendale, PA, 1986, pp. 559–83.

    Google Scholar 

  41. L. Wagner, J.K. Gregory, A. Gysler, and G. Lütjering: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS, Warrendale, PA, 1986, pp. 117–28.

    Google Scholar 

  42. G.C. Smith: Proc. R. Soc., 1957, vol. A242, pp. 189–97.

    CAS  Google Scholar 

  43. K. Tanaka, M. Hojo, and Y. Nakai: in Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, ASTM STP811, J. Lankford, D.L. Davidson, W.L. Morris, and R.P. Wei, eds., ASTM, Philadelphia, PA, 1983, pp. 207–32.

    Google Scholar 

  44. T. Kunio and K. Yamada: in Fatigue Mechanisms, ASTM STP675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 342–70.

    Google Scholar 

  45. T.E. McGreevy and D.F. Socie: Fat. Fract. Eng. Mater. Struct., 1999, vol. 22.

  46. M. Peters, A. Gysler, and G. Luetjering: in Titanium ’80 Science and Technology, H. Kimura and O. Izumi, eds., AIME, Warrendale, PA, 1980, vol. 3, pp. 1777–85.

    Google Scholar 

  47. X. Demuslant and J. Mendez: Fat. Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 1483–97.

    Article  Google Scholar 

  48. D.L. Davidson and K.S. Chan: Acta Metall., 1989, vol. 37 (4), pp. 1089–97.

    Article  CAS  Google Scholar 

  49. D.L. Davidson and S.J. Hudak, Jr.: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2247–57.

    CAS  Google Scholar 

  50. D.L. Davidson: Fat. Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 445–52.

    Article  Google Scholar 

  51. B. Weiss, R. Stickler, and A. Fathulla: in Short Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS, Warrendale, PA, 1986, pp. 471–97.

    Google Scholar 

  52. D.A. Jablonski: Mater. Sci. Eng., 1981, vol. 48, pp. 189–98.

    Article  CAS  Google Scholar 

  53. S.P. Bhat, R.S. Cline, and Y.-W. Chung: M.E. Fine Symp., P.K. Liaw, J.R. Weertman, H.L. Marcus, and J.S. Santner, eds., TMS, Warrendale, PA, 1991, pp. 49–59.

    Google Scholar 

  54. Y.N. Lenets: Improved High Cycle Fatigue Life Prediction, Final Report No. F33615-96-C-5269, University of Dayton Research Institute, Dayton, OH, 2001, Appendix 3C.

    Google Scholar 

  55. R.E. deLaneuville and J.W. Sheldon: Improved High Cycle Fatigue Life Prediction, Final Report No. F33615-96-C-5269, University of Dayton Research Institute, Dayton, OH, 2001, Appendix 3B.

    Google Scholar 

  56. H. Neuber: Theory of Notch Stress, translated by F.A. Raven, Edwards, Ann Arbor, MI, 1946.

  57. M.M. Hammouda, R.A. Smith, and K.J. Miller: Fat. Eng. Mater. Struct., 1979, vol. 2, pp. 139–54.

    Article  Google Scholar 

  58. M.A. Moshier, T. Nicholas, and B.M. Hillberry: Fatigue and Fracture Mechanics, ASTM STP 1417, W.G. Reuter and R.S. Piascik, eds., ASTM, West Conshohocken, PA, 2002, vol. 33, in press.

    Google Scholar 

  59. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Fracture Mechanics: 16th Symposium, ASTM STP868, M.F. Kanninen and A.T. Hopper, eds., ASTM, Philadelphia, PA, 1985, pp. 392–405.

    Google Scholar 

  60. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Proc. 23rd Structures, Structural Dynamics and Materials Conf., CP823, Part 1, American Institute of Aeronautics and Astronautics, New York, NY, 1982, pp. 132–36.

    Google Scholar 

  61. G.R. Yoder, L.A. Cooley, and R.R. Boyer: in Microstructure, Fracture Toughness and Fatigue Crack Growth Rate in Titanium Alloys, A.K. Chakrabarti and J.C. Chesnutt, eds., TMS, Warrendale, PA, 1987, pp. 209–29.

    Google Scholar 

  62. S.S. Manson: Exper. Mech., 1965, vol. 5, pp. 193–226.

    Article  Google Scholar 

  63. J.C. Grosskreutz and G.G. Shaw: Technical Report No. 66–96, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Dayton, OH, May 1966.

  64. S.S. Manson and M.H. Hirschberg: Technical Note D-3146, NASA, Cleveland, OH, June 1967.

    Google Scholar 

  65. N.E. Frost and D.S. Dugdale: J. Mech. Phys. Solids, 1957, vol. 5, pp. 182–92.

    Article  Google Scholar 

  66. M.H. El Haddad, T.H. Hopper, and K.N. Smith: Eng. Fract. Mech., 1979, vol. 11, pp. 573–84.

    Article  Google Scholar 

  67. K. Tanaka and Y. Nakai: Fat. Eng. Mater. Struct., 1983, vol. 6, pp. 315–27.

    Article  Google Scholar 

  68. P. Lukas and M. Klesnil: Mater. Sci. Eng., 1978, vol. 34, pp. 61–68.

    Article  CAS  Google Scholar 

  69. A.A. Griffith: Phil. Trans. R. Soc. A, 1921, vol. 22A, pp. 163–98.

    Article  Google Scholar 

  70. E. Orowan: Rep. Progr. Phys., 1948, vol. XII, p. 185.

    Google Scholar 

  71. G.R. Irwin: Fracturing of Metals, ASM, Cleveland, OH, 1948, pp. 147–66.

    Google Scholar 

  72. P.K. Liaw, M.E. Fine, and D.L. Davidson: Fat. Eng. Mater. Struct., 1980, vol. 3, pp. 59–74.

    Article  CAS  Google Scholar 

  73. P.K. Liaw, S.I. Kwun, and M.E. Fine: Metall. Trans. A, 1981, vol. 12A, pp. 49–55.

    Google Scholar 

  74. M.E. Fine and D.L. Davidson: in Fatigue Mechanisms, J. Lankford et al., eds., ASTM STP811, Philadelphia, PA, 1983, pp. 350–70.

    Google Scholar 

  75. D.L. Davidson and J. Lankford: in Environment-Sensitive Fracture of Engineering Materials, Z.A. Foroulis, ed., TMS-AIME, Warrendale, PA, 1977, pp. 581–94.

    Google Scholar 

  76. D.L. Davidson: Morris E. Fine Symp., P.K. Liaw, J.R. Weertman, H.L. Marcus, and J.S. Santner, eds., TMS, Warrendale, PA, 1991, pp. 355–62.

    Google Scholar 

  77. S.R. Bodner, D.L. Davidson, and R.J. Lanford: Eng. Fract. Mech., 1983, vol. 17, pp. 189–91.

    Article  Google Scholar 

  78. D.F. Socie, N.E. Dowling, and P. Kurath: Fracture Mechanics: 15th Symp., ASTM STP833, R.I. Sanford, ed., ASTM, Philadelphia, PA, 1984, pp. 284–99.

    Google Scholar 

  79. J.G. Antonopoulus, L.M. Brown, and A.T. Winter: Phil. Mag., 1976, vol. 34, pp. 549–63.

    Google Scholar 

  80. U. Essman and H. Mughrabi: Phil. Mag., 1979, vol. 40, pp. 731–56.

    Google Scholar 

  81. P.J.E. Forsyth: Proj. R. Soc., 1957, vol. A242, pp. 198–202.

    Google Scholar 

  82. Y. Dai, N. Marchand, and M. Hongoh: Can. Aero. Space J., 1993, vol. 39, pp. 35–44.

    Google Scholar 

  83. J. Kestin and J.R. Rice: Proc. Critical Review of Thermodynamics Symposium, E.B. Stuart, G.-O. Benjamin, and A.J. Brainard, eds., University of Pittsburgh School of Engineering Publication, Pittsburgh, PA, 1970, pp. 275–98.

    Google Scholar 

  84. J.R. Rice: J. Appl. Mech., 1970, vol. 37, pp. 728–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S. A microstructure-based fatigue-crack-initiation model. Metall Mater Trans A 34, 43–58 (2003). https://doi.org/10.1007/s11661-003-0207-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0207-9

Keywords

Navigation