Skip to main content
Log in

Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The commercial multiplication of a large number of diverse plant species represents one of the major success stories of urilizing tissue culture technology profitably. Micropropagation has now become a multibillion dollar industry, practised all over the world. Of the various methods used to micropropagate plants, somatic embryogenesis and enhanced axillary branching have become the principal methods of multiplication. Long-term benefits of this enterprise, however, lie in the production of clonally uniform plants. The concept of genetic uniformity among micropropagated plants derived through organized meristems was exploded by several convincing reports of the incidence of somaclonal variation at morphological, cytological (chromosome number and structure), cytochemical (genome size), biochemical (proteins and isozymes), and molecular (nuclear and organellar genomes) levels. Somaclonal variation is not limited to any particular group of plants; it has been reported, for example, in ornamentals, plantation crops, vegetable and food crops, forest species and fruit trees. The upsurge of these reports, facilitated to a large extent by the technical developments made in molecular biology, is a matter of great concern for any micropropagation system. The economic consequences of somaclonal variation can be enormous in forest trees and woody plants, as they have long life cycles. Therefore, somaclonal variation has to be dispensed with if large-scale micropropagation of diverse plant species is to become not only successful but also accepted by end-users. In the light of the various factors (genotype, ploidy level, in vitro culture age, explant and culture type, etc.) that lead to somaclonal variation of divergent genetic changes at the cellular and molecular levels, genetic analysis of micropropagated plants using a multidisciplinary approach, especially at the DNA sequence level, initially and at various cultural stages, is essential. The results obtained at early multiplication stages from these tests could help in modifying the protocol/s for obtaining genetically true-to-type plants, and ultimate usage by entrepneneurs without any ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahloowalia B. S. Spectrum of variation in somaclones of triploid rye grass. Crop Sci. 23:1141–1147; 1983.

    Google Scholar 

  • Ahloowalia, B. S.; Maretzki, A. Plant regeneration via somatic embryogenesis in sugar cane. Plant Cell Rep. 2:21–25; 1983.

    Google Scholar 

  • Al-Zahim, M. A.; Ford-Lloyd, B. V.; Newbury, H. J. Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep. 18:473–477; 1999.

    CAS  Google Scholar 

  • Amberger, L. A.; Shoemaker, R. C.; Palmer, R. G. Inheritance of two independent isozyme variants in soybean plants derived from tissue culture. Theor. Appl. Genet. 84:600–607; 1992.

    Google Scholar 

  • Ammirato, P. V. Embryogenesis. In: Evans, D. A.; Sharp, W. R.; Ammirato, P. V.; Yamada, Y., eds. Handbook of plant cell culture. Vol. 1, New York: Macmillan Press; 1983:82–123.

    Google Scholar 

  • Ammirato, P. V.; Styer, D. J. Strategies for large scale manipulation of somatic embryos in suspension culture. In: Zaitlin, M.; Day, P.; Hollaender, A., eds. Biotechnology in plant science: relevance to agriculture in the eighties. New York: Academic Press; 1985:161–178.

    Google Scholar 

  • Anderson, H. M.; Abbott, A. J.; Wilshire, S. Micropropagation of strawberry plants: in vitro effect of growth regulators on incidence of multi-apex abnormality. Sci. Hort. 16:331–341; 1982.

    CAS  Google Scholar 

  • Armstrong, C. L.; Green, C. E. Establishment and maintenance of friable, embryogenic maize callus and involvement of l-proline. Planta 164:207–214; 1985.

    CAS  Google Scholar 

  • Armstrong, C. L.; Phillips, R. L. Genetic and cytogenetic variation in plants regenerated from organogenic and friable embryogenic tissue cultures of maize. Crop Sci. 28:363–369; 1988.

    Google Scholar 

  • Armstrong, K. C.; Nakamura, C.; Keller, W. A. Karyotypic instability in tissue culture regenerants of triticale (x Triticosecale Wittmack) cv. Welsh from 6-month-old callus. Z. Pflanzen 91:233–245; 1983.

    Google Scholar 

  • Babu, K. N.; Ravindran, P. N.; Peter, K. V. Biotechnology of spices. In: Chadha, K. L.; Ravindran, P. N.; Sahijram, L., eds. Biotechnology in horticulture and plantation crops. New Delhi: Malhotra Publishing House; 2000:487–527.

    Google Scholar 

  • Bajaj, Y. P. S. Automated micropropagation for en masse production of plants. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry. Vol. 17. Berlin, Heidelberg, New York: Springer Verlag; 1991:3–16.

    Google Scholar 

  • Bajaj, Y. P. S. Biotechnology in agriculture and forestry. Vol. 39. Berlin, Heidelberg, New York: Springer Verlag; 1997.

    Google Scholar 

  • Ball, D. J.; Gross, D. S.; Garrard, W. T. 5-methylcytosine is localised in nucleosomes that contain histone H1. Proc. Natl Acad. Sci. USA 80:5490–5494; 1983.

    PubMed  CAS  Google Scholar 

  • Bebeli, P.; Karp, A.; Kaltsikes, P. J. Plant regeneration from cultured immature embryos of sister lines of rye and triticale differing in their content of heterochromatin I. Morphogenetic response. Theor. Appl. Genet. 75:929–936; 1988.

    Google Scholar 

  • Benzion, G. Genetic and cytogenetic analysis of maize tissue cultures: a cell line pedigree analysis. Ph.D. Thesis, University of Minnesota, St. Paul, MN; 1984.

    Google Scholar 

  • Bhojwani, S. S.; Dhawan, V.; Cocking, E. C. Plant tissue culture—a classified bibliography. Amsterdam: Elsevier Science; 1986.

    Google Scholar 

  • Bonga, J. M.; Durzan, D. J. Cell and tissue culture in forestry. Vol. 1. Dordrecht: Martinus Nijhoff; 1987.

    Google Scholar 

  • Bouman, H.; Kuijpers, A. M.; de Klerk, G. J. The influence of tissue culture methods on somaclonal variation in Begonia. Physiol. Plant. 85:A45; 1992.

    Google Scholar 

  • Brar, D. S.; Jain, S. M. Somaclonal variation: mechanism and application in crop improvement. In: Jain, S. M.; Brar, D. S.; Ahloowalia, B. S., eds. Simaclonal variation and induced mutation in crop improvement. Dordrecht: Kluwer Academic; 1999:15–38.

    Google Scholar 

  • Breiman, A.; Falsenberg, T.; Galun, E. Nor loci analysis in progenies of plants regenerated from the scutellar callus of breadwheat: a molecular approach to evaluate somaclonal variation. Theor. Appl. Genet. 73:827–831; 1987.

    CAS  Google Scholar 

  • Brettell, R. I. S.; Dennis, E. S. Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol. Gen. Genet. 229:365–372; 1991.

    PubMed  CAS  Google Scholar 

  • Brettell, R. I. S.; Dennis, E. S.; Scowcroft, W. R.; Peacock, W. J. Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol. Gen. Genet. 202:235–239; 1986a.

    CAS  Google Scholar 

  • Brettell, R. I. S.; Palota, M. A.; Gustafson, J. P. Variation at the Nor loci in triticale derived from tissue culture. Theor. Appl. Genet. 71:637–643; 1986b.

    CAS  Google Scholar 

  • Browers, M. A.; Orton, T. J. A factorial study of chromosomal variability of callus cultures of celery (Apium graveolens). Plant Sci. Lett. 26:65–69; 1982.

    Google Scholar 

  • Brown, P. T. H. DNA methylation in plants and its role in tissue culture. Genome 31:717–729; 1989.

    CAS  Google Scholar 

  • Brown, P. T. H.; Gobel, E.; Lorz, H. RFLP analysis of Zea mays callus cultures and their regenerated plants. Theor. Appl. Genet. 81:227–232; 1991.

    CAS  Google Scholar 

  • Brown, P. T. H.; Lange, F. D.; Kranz, E.; Lorz, H. Analysis of single protoplasts and regenerated plants by PCR and RAPD technology. Mol. Gen. Genet. 237:311–317; 1993.

    PubMed  CAS  Google Scholar 

  • Brown, P. T. H.; Lorz, H. Molecular changes and possible origin of somaclonal variation. In: Semal, J., ed. Somaclonal variation and crop improvement. Dordrecht: Martinus Nijhoff; 1986:138–159.

    Google Scholar 

  • Cai, T.; Ejeta, G.; Axtell, J. D.; Butler, L. G. Somaclonal variation in high yielding sorghums. Theor. Appl. Genet. 79:737–747; 1990.

    Google Scholar 

  • Carver, B. E.; Johnson, B. B. Partitioning of variation derived from tissue culture of winter wheat. Theor. Appl. Genet. 78:405–410; 1989.

    Google Scholar 

  • Chowdhury, M. K. U.; Schaeffer, G. W.; Smith, R. L. Molecular analysis of organellar DNA of different subspecies of rice and the genomic stability of the mtDNA in tissue cultured cells of rice. Theor. Appl. Genet. 76:533–539; 1988.

    CAS  Google Scholar 

  • Chowdhury, M. K. U.; Vasil, V.; Vasil I. K. Molecular analysis of plants regenerated from embryogenic cultures of wheat (Triticum aestivum L.). Theor. Appl. Genet. 87:821–828; 1994.

    CAS  Google Scholar 

  • Cooper, D. B.; Sears, D. G.; Lookhart, G. L.; Jones, B. L. Heritable somaclonal variation in gliadin proteins of wheat plants derived from immature embryo callus cultures. Theor. Appl. Genet. 71:784–790; 1986.

    CAS  Google Scholar 

  • Corley, R. H. V.; Lee, C. H.; Law, I. H.; Wong, C. Y. Abnormal flower development in oilpalm clones. Planter 62:233–240; 1986.

    Google Scholar 

  • Corre, F.; Henry, Y.; Rode, A.; Hartmann, C. Em gene expression during somatic embyogenesis of monocot Triticum aestivum L. Plant Sci. 117:139–149; 1996.

    CAS  Google Scholar 

  • Cullis, C. A. Environmentally induced changes in ribosmal cistron number in flax. Heredity 36:73–79; 1976.

    Google Scholar 

  • Cummings, D. P.; Green, C. E.; Stuthmann, D. D. Callus induction and plant regeneration in oat. Crop Sci. 16:465–470; 1976.

    Google Scholar 

  • D'Amato, F. Cytogenetics of plant cell and tissue cultures and their regenerants. CRC Crit. Rev. Plant Sci. 3:73–112; 1985.

    Google Scholar 

  • Davies, P. A.; Palotta, M. A.; Ryan, S. A. Somaclonal variation in wheat: genetic and cytogenetic characterization of alcohol dehydrogenase I mutants. Theor. Appl. Genet. 72:644–653; 1986.

    CAS  Google Scholar 

  • Debergh, P. C.; Read, P. E. Micropropagation. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation, technology and application. Dordrecht, Boston, London: Kluwer Academic; 1990:1–13.

    Google Scholar 

  • Debergh, P. C.; Zimmerman, R. H. Micropropagation, technology and application. Dordrecht, Boston, London: Kluwer Academic; 1990.

    Google Scholar 

  • De Buyser, J.; Hartmann, C.; Henry, Y.; Rode, A. Variation in long-term wheat somatic tissue culture: chromosomal number, plant morphology, and mitochondrial DNA. Can. J. Bot. 66:1891–1895; 1988.

    Google Scholar 

  • Dennis, E. S.; Brettell, R. I. S.; Peacock, W. J. A tissue culture induced AdhI null mutant of maize results from a single base change. Mol. Gen. Genet. 210:181–183; 1987.

    CAS  Google Scholar 

  • Denison, N. P.; Quaile, D. R. The applied clonal Eucalyptus programme in Mondi forests. South Afr. For. J. 142:60–67; 1987.

    Google Scholar 

  • De Verno, L. L.; Charest, P. J.; Bonen, L. Mitochondrial DNA variation in somatic embryogenic cultures of Larix. Theor. Appl. Genet. 88:727–732; 1994.

    Google Scholar 

  • Dunstan, D. I.; Thorpe, T. A. Regeneration in forest trees. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants, Vol. 3. Orlando: Academic Press; 1986:223–241.

    Google Scholar 

  • Earle, E. D.; Kuehnle, A. R. Somaclonal variation in maize. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry. II. Somaclonal variation in crop improvement. Berlin, Heidelberg: Springer Verlag; 1990:326–351.

    Google Scholar 

  • Eastmann, P. A. K.; Webster, F. B.; Pitel, J. A.; Roberts, D. R. Evaluation of somaclonal variation during somatic embryogenesis of interior spruce (Picea glauca engelmanii complex) using tissue culture morphology and isozyme analysis. Plant Cell Rep. 10:425–430; 1991.

    Google Scholar 

  • Edallo, S.; Zucchinali, C.; Perenzin, M.; Salamini, F. Chromosomal variation and frequency of spontaneous mutation associated with in vitro culture and plant regeneration in maize. Maydica 26:39–56; 1981.

    Google Scholar 

  • Fluminhan, A.; Kameya, T. Behaviour of chromosomes in anaphase cells in embryogenic callus cultures of maize (Zea mays L.). Theor. Appl. Genet. 92:982–990; 1996.

    Google Scholar 

  • Foss, H. M.; Roberts, C. J.; Claeys, K. M.; Selker, E. U. Abnormal chromsome behaviour in Neurospora mutants defective in DNA methylation. Science 262:1737–1741; 1993.

    PubMed  CAS  Google Scholar 

  • Fourre, J. L.; Berger, P.; Niquet, L.; Andre, P. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor. Appl. Genet. 94:159–169; 1997.

    Google Scholar 

  • Franzone, P. M.; Suarez, E. Y.; Solari, R. M.; Favert, E. A.; Rios, R. D.; Diaz-Paleo, A. H. Somaclonal variation in three Argentinian varieties of Triticum aestivum with different karyotype variability. Plant Breed. 115:89–93; 1996.

    CAS  Google Scholar 

  • Fujii, D. S. In vitro propagation of celery (Apium graveolens L.). M.Sc. Thesis, University of California, Davis, CA; 1982.

    Google Scholar 

  • Gavidia, I.; Del Castillo, A. L. D.; Perez-Bermudez, V. Selection of long-term cultures of high yielding Digitalis obscura plants: RAPD markers for analysis of genetic stability. Plant Sci. 121:197–205; 1996.

    CAS  Google Scholar 

  • Gavinlertvatana, P.; Matheson, A.C.; Sim, A. P. Feasibility study on tissue culture of multipurpose forest tree species. Bangkok: Winrock International; 1987:1–78.

    Google Scholar 

  • Gengenbach, B. Maternal segregation for a mtDNA deletion in maize. Genome 30:315; 1988 (Suppl. 1).

    Google Scholar 

  • Govil, S.; Gupta, S. C. Commercialisation of plant tissue culture in India. Plant Cell Tiss. Organ Cult. 51:65–73; 1997.

    Google Scholar 

  • Grenan, S. Micropropagation in grapevine (Vitis vinifera). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, Vol. 18. HighTech and micropropagation II. Berlin, Heidelberg: Springer Verlag; 1992:371–385.

    Google Scholar 

  • Gu, J.; Dempsey, S.; Newton, K. J. Rescue of a maize mitochondrial cytochrome oxidase mutant by tissue culture. Plant J. 6:787–794; 1994.

    PubMed  CAS  Google Scholar 

  • Gupta, P. K.; Mascarenhas, A. F. Eucalyptus. In: Bonga, J. M.; Durzan, D. J.; eds. Cell and tissue culture in forestry. Vol. 3. Dordrecht: Martinus Nijhoff; 1987:385–399.

    Google Scholar 

  • Hackett, W. P. Donor plant maturation and adventitious root formation. In: Davies, T. D.; Haissig, B. E.; Sankhla, N., eds. Adventitious root formation in cuttings. Portland: Dios Press; 1988:11–28.

    Google Scholar 

  • Haissig, P. E.; Nelson, N. D.; Kidd, G. H. Trends in the use of tissue culture in forest improvement. BioTech. 5:52–57; 1987.

    Google Scholar 

  • Hammerschlag, F. A. Factors influencing the frequency of callus formation among cultured peach anthers. Hort. Sci. 19:554; 1984.

    Google Scholar 

  • Hanna, W. W.; Lu, C.; Vasil, L. K.: Uniformity of plants regenerated from somatic embryos of Panicum maxicum Jacq. (Guinea grass). Theor. Appl. Genet. 67:155–159; 1984.

    Google Scholar 

  • Hanson, M. R. Stability, variation and recombination in plant mitochondrial genomes via tissue culture and somatic hybridization. Oxf. Surv. Plant Mol. Cell Biol. 1:33–52; 1984.

    CAS  Google Scholar 

  • Hartmann, C.; De Buyser, J.; Henry, Y.; Falconet, D.; Lejeune, B.; Benslimane, A.; Quetier, F.; Rode, A. Time course of mitochondrial genome variation in wheat embryogenic somatic tissue cultures. Plant Sci. 53:191–198; 1987.

    CAS  Google Scholar 

  • Hartmann, C.; De Buyser, J.; Henry, Y.; Morere-Le Paven, M. C.; Dyer, T. A.; Rode, A. Nuclear genes control changes in organization of mt genome, in tissue cultures derived from immature embryos of wheat. Curr. Genet. 21:515–520; 1992.

    PubMed  CAS  Google Scholar 

  • Hartmann, C.; Henry, Y.; De Buyser, J. Identification of new mitochondrial genome organizations in wheat plants regenerated from somatic tissue cultures. Theor. Appl. Genet. 77:169–175; 1989.

    Google Scholar 

  • Hartmann, C.; Recipin, H.; Jubier, M.; Valor, C.; Delcher, B.; Henry, Y.; De Buyser, J.; Lejeune, B.; Rode, A. Mitochondrial DNA variability in a single wheat regenerant involves a rare recombination event across a short repeat. Curr. Genet. 25:456–464; 1994.

    PubMed  CAS  Google Scholar 

  • Hartmann, R. D. The role of micropropagation business in the invention and commercialization of plants. In: Mobry, T. J., ed. Plant biotechnology. Austin: IC Institute; 1988:193–203.

    Google Scholar 

  • Hashmi, G.; Huettel, R.; Krusberg, L.; Hammerschlag, P. RAPD analysis of somaclonal variants derived from embryo callus cultures of peach. Plant Cell Rep. 6:624–627; 1997.

    Google Scholar 

  • Heinz, B. Schmidt, J. Monitoring genetic fidelity vs somaclonal variation in Norway Spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85:341–345; 1995.

    Google Scholar 

  • Henry, Y.; Marcotte, J. L.; De Buyser, J. The effect of aneuploidy on karyotype abnormality in wheat plants regenerated from short and long-term somatic embryogenesis. Plant Sci. 114:101–109; 1996.

    CAS  Google Scholar 

  • Henry, Y.; Nato, A.; De Buyser, J. Genetic fidelity of plants regenerated from somatic embryos of cereals. In: Jain, S. M.; Brar, D. S.; Ahloowalia, B. S., eds. Somaclonal variation and induced mutation in crop improvement. Dordrecht: Kluwer Academic; 1998:65–80.

    Google Scholar 

  • Hirochika, H.; Sugimoto, K.; Otsuki, Y.; Tsugawa, H.; Kanda, M. Retrotransponons of rice involved in mutations induces by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783–7788; 1996.

    PubMed  CAS  Google Scholar 

  • Hwang, S. C. Variation in banana plants propagated through tissue culture. J. Chin. Soc. Hort. Sci. 32:117–125; 1986.

    Google Scholar 

  • Hwang, S. C.; Ko, W. H. Somaclonal variation of bananas and screening for resistance to Fusarium wilt. In: Persley, G. J.; Ge Langhe, E. A., eds. Banana and plantain breeding strategies. Proceedings of an International Workshop. Cairns, Australia; 1987.

  • Ikemori, Y. K. The Marcus Wallenberg Foundation symposium proceedings. Sweden: Marcus Wallenberg Foundations; 1984; 16–20.

    Google Scholar 

  • Isabel, N.; Bovin, R.; Levasseur, C.; Charest, P. M.; Bousquet, J.; Tremblay, F. M. Occurrence of somaclonal variation among somatic embryoderived white spruce (Picea glauca, Pinacae). Amer. J. Bot. 83:1121–1130; 1996.

    Google Scholar 

  • Isabel, N.; Tremblay, L.; Michaud, M.; Tremblay, F. M.; Bousquet, J. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis derived populations of Picea mariana (Mill.) B.S.P. Theor. Appl. Genet. 86:81–87; 1993.

    CAS  Google Scholar 

  • Jahne, A.; Lazzeri, P. A.; Jager-Gussen, M.; Lorz, H. Plant regeneration from embryogenic cell suspensions derived from anther cultures of barley (Hordeum vulgare L.). Theor. Appl. Genet. 82:74–80; 1991.

    Google Scholar 

  • Jain, S. M.; Brar, D. S.; Ahloowalia, B. S. Somaclonal variation and induced mutations in crop improvement. Dordrecht, Boston, London: Kluwer Academic; 1998.

    Google Scholar 

  • James, M. G.; Stadler, J. Molecular characterization of mutator systems in maize embryogenic callus culture indicates Mu element activity in vitro. Theor. Appl. Genet. 77:383–393; 1989.

    CAS  Google Scholar 

  • Jones, J. Determining markets and market potential. In: Zimmerman, R. H.; Griesbach, R. J.; Hammerschlag, F. A.; Lawson, R. H., eds. Tissue culture as a plant production system for horticultural crops. Dordrecht: Martinus Nijhoff; 1986:175–182.

    Google Scholar 

  • Kaeppler, S. M.; Phillips, R. L. Tissue culture-induced DNA methylation in maize. Proc. Natl. Acad. Sci. USA 90:8773–8776; 1993.

    PubMed  CAS  Google Scholar 

  • Kaeppler, S. M.; Phillips, R. L.; Olhoft, P. Molecular basis of heritable tissue culture-induced variation in plants. In: Jain, S. M.; Brar, P. S.; Ahloowalia, D. S., eds. Somaclonal variation and induced mutations in crop improvement. Dordrecht: Kluwer Academic; 1998:465–484.

    Google Scholar 

  • Karp, A. On the current understanding of somaclonal variation. Oxf. Surv. Plant Mol. Cell Biol. 7:1–58; 1991.

    Google Scholar 

  • Karp, A.; Bright, S. W. J. On the causes and origins of somaclonal variation. Oxf. Surv. Plant Mol. Cell Biol. 2:199–234; 1985.

    Google Scholar 

  • Karp, A.; Maddock, S. E. Chromosome variation in wheat plants regenerated from cultured immature embryos. Theor. Appl. Genet. 67:249–255; 1984.

    Google Scholar 

  • Kawata, M.; Ohmiya, A.; Shimamoto, Y.; Oono, K.; Takaiwa, F. Structural changes in the plastid DNA of rice (Oryza sativa L.) during tissue culture. Theor. Appl. Genet. 90:364–371; 1995.

    CAS  Google Scholar 

  • Khalid, N.; Davey, M. R.; Power, J. B. An assessment of somaclonal variation in Chrysanthemum merifolium: The generation of plants of commerical value. Sci. Hort. 38:287–294; 1989.

    Google Scholar 

  • Kishira, H.; Takada, H.; Shoyama, Y. Micropropagation of Panax ginseng C.A. Meyer by somatic embryos. Acta Hort. 319:197–202; 1992.

    Google Scholar 

  • Krikorian, A. D. In vitro culture of bananas and plantains: background, update and call for information. Trop. Agric. (Trin.) 66:194–200; 1989.

    Google Scholar 

  • Lapitan, N. L. V.; Sears, R. G.; Gill, B. S. Translocation and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor. Appl. Genet. 68:547–554; 1984.

    Google Scholar 

  • Larkin, P. J.; Ryan, S. A.; Brettell, R. I. S.; Scowcroft, W. R. Heritable somaclonal variation in wheat. Theor. Appl. Genet. 67:443–455; 1984.

    CAS  Google Scholar 

  • Lassner, M. W.; Orton, T. J. Detection of somatic variation. In: Tanksley, S. D.; Orton, T. J., eds. Isozyme in plant genetics and breeding. Part A. Amsterdam: Elsevier Science: 1983:207–217.

    Google Scholar 

  • Lee, M.; Phillips, R. L. Genomic rearrangements in maize induced by tissue culture. Genome 29:122–128; 1987a.

    Google Scholar 

  • Lee, M.; Phillips, R. L. Genetic variants in the progeny of regenerated maize plants. Genome 29:834–838; 1987b.

    Google Scholar 

  • Lee, M.; Phillips, R. L. The chromosomal basis of somaclonal variation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:413–437; 1988.

    Google Scholar 

  • Levings, C. S. III.; Kim, B. D.; Pring, D. R.; Conde, M. I.; Mans, R. J.; Laughnan, J. R.; Gabny-Laughram, S. J. Cytoplasmic reversion of cms-S in maize: association with a transpositional event. Science 209:1021; 1980.

    CAS  Google Scholar 

  • Litz, R. E. Application of tissue culture to tropical fruits. In: Green, C. E.; Somers, D. A.; Hacket, W. P.; Bisboer, D. D., eds. Plant tissue and cell culture. New York: A. R. Liss; 1987:407–418.

    Google Scholar 

  • Lutz, J. D.; Wong, J. R.; Rowe, J.; Tricoli, D. M.; Lawrence, R. H. Jr. Somatic embryogenesis for mass cloning of crop plants. In: Henke, R. R.; Hughes, K. W.; Constantin, M. P.; Hollaender, A., eds. Tissue culture in forestry and agriculture. New York: Plenum; 1985:105–116.

    Google Scholar 

  • Maddock, S. E.; Risiott, R.; Parmar, S.; Jones, M. G. K.; Shewry, P. R. Somaclonal variation in the gliadin patterns of grains of regenerated wheat plants. J. Exp. Bot. 36:1976–1984; 1985.

    CAS  Google Scholar 

  • Marcotrigiono, M.; Boyle, T. H.; Morgan, P. A.; Ambach, K. L. Leaf colour variants from Coleus shoot cultures. J. Am. Soc. Hort. Sci. 115:681–686; 1990.

    Google Scholar 

  • Martinelli, A. Micropropagation of strawberry (Fragaria spp.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and foresty, Vol. 18. HighTech, and micropropagation II. New York: Springer Verlag; 1992:354–370.

    Google Scholar 

  • Matzke, M. A.; Matzke, A. J. M. Differential inactivation and methylation of a trans gene in plants by two suppressor loci containing homologous sequences. Plant Mol. Biol. 16:821–830; 1991.

    PubMed  CAS  Google Scholar 

  • McClintock, B. Trauma as a means of initiating change in genome organization and expression. In Vitro Cell. Devel. Biol.—Plant 19:283–284; 1983.

    Google Scholar 

  • McClintock, B. The significance of responses of genome to challenge. Science 226:792–801; 1984.

    PubMed  CAS  Google Scholar 

  • McCoy, T. J.; Phillips, R. L.; Rines, H. W. Cytogenetic analysis of plants regenerated from oat (Avena sativa) tissue cultures: high frequency of partial chromosome loss. Can. J. Genet. Cytol. 24:37–50; 1982.

    Google Scholar 

  • Metakovsky, E. V.; Novoselskaya, A. Yu.; Sozinov, A. A. Problems of interpreting results obtained in studies of somaclonal variation in gliadin proteins in wheat. Theor. Appl. Genet. 73:764–766; 1987.

    Google Scholar 

  • Mo, L. H.; von Arnold, S.; Lagercrant, Z. Morphogenic and genetic stability in long-term embryogenic cultures and somatic embryos of Norway spruce (Picea abies L.). Plant Cell Rep. 8:375–378; 1989.

    Google Scholar 

  • Mohmand, A. S.; Nabors, M. W. Somaclonal variant plants of wheat derived from mature embryo explants of three genotypes. Plant Cell Rep. 8:558–560; 1990.

    Google Scholar 

  • Moore, G. A.; Dewald, M. G.; Evans, M. H. Micropropagation of pineapple (Ananas comosus L.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, Vol. 18. High Techn and micropropagation II. New York: Springer Verlag; 1992;460–469.

    Google Scholar 

  • Morere-Le Paven, M. C.; De Buyser, J.; Henry, Y.; Corre, F.; Hartmann, C.; Rode, A. Multiple pattern of mtDNA reorganization in plants regenerated from different in vitro cultured explants of a single wheat variety. Theor. Appl. Genet. 85:9–14; 1992.

    Google Scholar 

  • Morrish, F. M.; Hanna, W.; Vasil, I. K. The expression and perpetuation of inherent somatic variation in regenerants from embryogenic cultures of Pennisetum glaucum (L.) R. Br (pearl millet). Theor. Appl. Genet. 80:673–679; 1990.

    Google Scholar 

  • Mott, R. L. Trees. In: Conger, B. V., ed. Cloning agricultural plants via in vitro techniques. Florida: CRL Press; 1981:217–254.

    Google Scholar 

  • Muller, E.; Brown, P. T. H.; Hartke, S. DNA variation in tissue cultured-derived rice plants. Theor. Appl. Genet. 80:673–679; 1990.

    Google Scholar 

  • Mullins, M. G. Propagation and genetic improvement of temperate fruits: the role of tissue culture. In: Green, C. E.; Somers, D. A.; Hackett, W. P.; Bisboer, D. D., eds. Plant tissue and cell culture. New York: A. R. Liss; 1987:395–406.

    Google Scholar 

  • Munthali, M. T.; Newbury, H. J.; Ford-Lloyd, B. V. The detection of somaclonal variants of beet using RAPD. Plant Cell Rep. 15:474–478; 1996.

    CAS  Google Scholar 

  • Murashige, T. The impact of plant tissue culture on agriculture. In: Thorpe, T. A., ed. Frontiers of plant tissue culture. Calgary: University of Calgary, International Association for Plant Tissue Culture; 1978:15–26.

    Google Scholar 

  • Navatel, J. C.; Varachaud, G.; Roudeillac, P.; Barbet, A. Comportment agronomique de plantes dont les pieds meres ant ete obtenus par multiplication in vitro par rapport ou material classique. Bellegarde: CIREF-CTIFL Cent Balandran; 1985.

    Google Scholar 

  • Neves, N.; Barao, A.; Castilho, A.; Silva, M.; Morais, L.; Carvalho, V.; Viegas, W. Influence of DNA methylation on rye B chromosome nondisjunction. Genome 35:650–650; 1992.

    Google Scholar 

  • O'Dell, C. R. Berries: marketing raspberries. Amer. Fruit Grower 109:34–35; 1989.

    Google Scholar 

  • Orshinsky, B. R.; Tomes, D. T. Comparison of plants derived from cuttings, node cultures, and ethyl methane sulphonate treated node cultures of birdsfoot frefoil (Lotus corniculatus). Can. J. Bot. 62:1501–1504; 1984.

    CAS  Google Scholar 

  • Orton, T. J. Chromosomal variability in tissue cultures and regenerated plants of Hordeum. Theor. Appl. Genet. 56:101–112; 1980.

    CAS  Google Scholar 

  • Orton, T. J. Experimental approaches to the study of somaclonal variation. Plant Mol. Biol. Rep. 1:67–76; 1983a.

    Google Scholar 

  • Orton, T. J. Spontaneous electrophoretic and chromosomal variability in callus cultures and regenerated plants of celery. Theor. Appl. Genet. 67:17–24; 1983b.

    Google Scholar 

  • Orton, T. J. Genetic variation in somatic tissues: method or madness. Adv. Plant Pathol 2:153–159; 1984.

    Google Scholar 

  • Orton, T. J. Genetic instability during embryogenic cloning of celery. Plant Cell Tiss. Organ Cult. 4:159–169; 1985.

    Google Scholar 

  • Orton, T. J. Case histories of genetic variation in vitro: celery. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants. Vol. 3. Orlando: Academic Press; 1986:345–366.

    Google Scholar 

  • Paranjothy, K. Oil palm. In: Ammirato, P. V.; Evans, D. A.; Sharp, W. R.; Yamada, Y., eds. Handbook of plant cell culture, Crop species. Vol. 3. New York: Macmillan; 1984:591–605.

    Google Scholar 

  • Paranjothy, K.; Saxena, S.; Banerjee, M.; jaiswal, V. S.; Bhojwani, S. S. Clonal multiplication of woody perennials. In: Bhojwani, S. S., ed. Plant tissue culture: applications and limitations. Amsterdam: Elsevier Science; 1990: 190–219

    Google Scholar 

  • Peschke, V. M.; Phillips, R. L. Activation of the maize transposable element Suppressor-mutator (spm) in tissue culture. Theor. Appl. Genet. 81:90–97; 1991.

    Google Scholar 

  • Peschke, V. M.; Phillips, R. L. Genetic implications of somaclonal variation in plants. Adv. Genet. 30:41–75; 1992.

    CAS  Google Scholar 

  • Peschke, V. M.; Phillips, R. L.; Gengenbach, B. G. Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238:804–807; 1987.

    Google Scholar 

  • Peschke, V. M.; Phillips, R. L.; Gengenbach, B. G. Genetic and molecular analysis of tissue culture-derived Ac elements. Theor. Appl. Genet. 82:121–129; 1991.

    CAS  Google Scholar 

  • Phillips, R. L.; Kaeppler, S. M.; Peschke, V. M. Do we understand somaclonal variation? In: Nijkamp, H. J. J.; Vanderplas, L. H. W.; Aartrijk, J. V., eds. Progress in plant cellular molecular biology. Dordrecht: Kluwer Academic; 1990:131–141.

    Google Scholar 

  • Phillips, R. L.; Kaeppler, S. M.; Olhoft, P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc. Natl. Acad. Sci. USA 91:5222–5226; 1994.

    PubMed  CAS  Google Scholar 

  • Phillips, R. L.; Somers, D. A.; Hibberd, K. A. Cell/tissue culture and in vitro manipulation. In: Sprague, G.; Dudley, J. W., eds. Corn and corn improvement. 3rd edn. Wisconsin: American Society of Agronomy; 1988:346–387.

    Google Scholar 

  • Pierik, R. L. M. In vitro culture of higher plants. Dordrecht: Kluwer Academic; 1987.

    Google Scholar 

  • Pierik, R. L. M. Commercial aspects of micropropagation. In: Prakash, J.; Pierik, R. L. M., eds. Horticulture—new technologies and applications. Dordrecht: Kluwer Academic; 1991:141–153.

    Google Scholar 

  • Planckaert, F.; Walbot, V. Molecular and genetic characterization of Mu transposable elements in Zea mays: behaviour in callus culture and regenerated plants. Genetics 123:567–578; 1989.

    PubMed  CAS  Google Scholar 

  • Rani, V. Potential use of molecular markers in the genetic analysis of in vitro propagated tree systems. Ph.D. thesis, Department of Botany, University of Delhi, India; 1995.

    Google Scholar 

  • Rani, V.; Parida, A.; Raina, S. N. Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh. Plant Cell Rep. 14:459–462; 1995.

    CAS  Google Scholar 

  • Rani, V.; Raina, S. N. PCR technology. Botanica 46:78–81; 1996.

    Google Scholar 

  • Rani, V.; Raina, S. N. Genetic analysis of enhanced axillary branching derived Eucalyptus tereticornis and E. camaldulensis plants. Plant Cell Rep. 17:236–242; 1998.

    CAS  Google Scholar 

  • Rani, V.; Singh, K. P.; Shiran, M.; Nandy, S.; Goel, S.; Sreenath, H. L.; Raina, S. N. Evidence for new nuclear and mitochondrial genome organizations among high frequency somatic embryogenesis-derived plants of allotetraploid Coffea arabica L. (Rubiaceae). Plant Cell Rep. (in press); 2000.

  • Rao, P. S.; Bapat, V. A.; Mhatre, M. Regulatory factors for in vitro multiplication of sandalwood tree (Santalum album Linn) II. Plant regeneration in nodal and internodal stem explants and occurrence of somaclonal variation in tissue culture raised plants. Proc. Ind. Natl Acad. Sci. 50:196–202; 1984.

    Google Scholar 

  • Redenbaugh, K.; Viss, P.; Slade, D.; Fujii, J. A. Scale-up: artificial seeds. In: Green, C. E.; Somers, D. A.; Hackett, W. P.; Biesboer, D. D., eds. Plant tissue and cell culture. New York: A. R. Liss; 1987:473–493.

    Google Scholar 

  • Reynolds, J. F. Regeneration in vegetable species. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants. Vol. 3. Orlando: Academic Press; 1986:151–178.

    Google Scholar 

  • Ronemus, M. J.; Ticksmar, M. G. C.; Chen, J.; Dellaporta, S. L. Demethylation induced developmental pleiotropy in Arabidopsis. Science 273:654–657; 1986.

    Google Scholar 

  • Ryan, S. A.; Larkin, P. J.; Ellison, F. W. Somaclonal variation in some agronomic and quality characters in wheat. Theor. Appl. Genet. 74:77–82; 1987.

    Google Scholar 

  • Saunders, J. W.; Doley, W. P.; Theurer, J. C.; Yu, M. H. Somaclonal variation in sugarbeet. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry. Vol. II. New York: Springer Verlag; 1990:465–490.

    Google Scholar 

  • Schmidt, M.; Walz, C.; Hesemann, C. V. Somaclonal variation of mitochondrial ATPase subunit 6 gene region in regenerated triticale shoot and full-grown plants. Theor. Appl. Genet. 93:355–360; 1996.

    CAS  Google Scholar 

  • Schoofs, J. Rapid clonal propagation, storage and exchange of Musa species. In: Baker, F. W. G., ed. Rapid propagation of fast growing woody species. Wallingford, UK: CAB International; 1992:29–41.

    Google Scholar 

  • Scowcroft, W. R. Somaclonal variation: the myth of clonal uniformity. In: Hohn, B.; Dennis, E. S., eds. Genetic flux in plants. Berlin: Springer Verlag; 1985:217–245.

    Google Scholar 

  • Shenoy, V. B.; Vasil, I. K. Biochemical and molecular analysis of plants derived from embryogenic cultures of napier grass (Pennisetum purpureum K. Schum.). Theor. Appl. Genet. 83:947–955; 1992.

    CAS  Google Scholar 

  • Shimron-Abarbanell, D.; Breiman, A. Comprehensive molecular characterization of tissue culture-derived Hordeum marinum plants. Theor. Appl. Genet. 83:71–80; 1991.

    Google Scholar 

  • Shoseyov, O.; Tsabary, G.; Reuveni, O. Detection of dwarf somaclones of banana cultivars (Musa) by RAPD markers. In: Jain, S. M.; Brar, D. S.; Ahloowalia, B. S., eds. Somaclonal variation and induced mutation in crop improvement. Dordrecht, Boston, London: Kluwer Academic; 1998:595–601.

    Google Scholar 

  • Shoyama, Y.; Matasushita, H.; Zhu, X. X.; Kishira, H. Somatic embryogenesis in ginseng (Panax spp.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, Vol. 31. Somatic embryogenesis and synthetic seed, II. Berlin, Heidelberg, New York: Springer Verlag; 1995:344–356.

    Google Scholar 

  • Shoyama, Y.; Zhu, X. X.; Nakai, R. R.; Shiraishi, S.; Kohda, H. Micropropagation of Panax notoginseng by somatic embryogenesis and RAPD analysis of the regenerants. Plant Cell Rep. 16:450–453; 1997.

    CAS  Google Scholar 

  • Smith, M. K. A review of factors influencing the genetic stability of micropropagated banas. Fruits 43:219–223; 1988.

    Google Scholar 

  • Swartz, H. J.; Galleta, G. J.; Zimmerman, R. H. Field performance and phenotypic stability of tissue culture-propagated strawberries. J. Amer. Soc. Hort. Sci. 106:667–673; 1981.

    Google Scholar 

  • Swartz, H. J.; Galleta, G. J.; Zimmerman, R. H. Field performance and phenotypic stability of tissue culture-propagated thornless blackberries. J. Amer. Soc. Hort. Sci. 106:285–290; 1983.

    Google Scholar 

  • Swartz, H. J.; Lindstrom, J. T. Small fruit and grape tissue culture from 1980–1985: commercialization of the technique. In: Zimmerman, R. H.; Griesbach, R. J.; Hammerschlag, F. A.; Lawson, R. H., eds. Tissue culture as a plant production system for horticultural crops. Dordrecht: Martinus Nijhoff; 1986:201–220.

    Google Scholar 

  • Taylor, P. W. J.; Geijskes, J. R.; Ko, H. L.; Fraser, T. A.; Henry, R. J.; Birch, R. J. Sensitivity of random amplified polymorphic DNA to detect genetic variation in sugarcane during tissue culture. Theor. Appl. Genet. 90:1169–1173; 1995.

    CAS  Google Scholar 

  • Teisson, C.; Cote, F. X. Micropropagation of Musa spp. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry. Vol. 39. Berlin, Heidelberg, New York: Springer Verlag; 1997:103–120.

    Google Scholar 

  • Thorpe, T. A. Frontiers of plant tissue culture. Canada: University of Calgary Press; 1978.

    Google Scholar 

  • Thorpe, T. A. In vitro somatic embryogenesis. ISI atlas of science-animal and plant sciences. 1:81–88; 1988.

    Google Scholar 

  • Thorpe, T. A. The current status of plant tissue culture. In: Bhojwani, S. S., ed. Plant tissue culture: applications and limitations. Amsterdam: Elsevier Science; 1990:1–33.

    Google Scholar 

  • Vajrabhaya, T. Variation in clonal propagation. In: Arditti, J., ed. Orchid biology: reviews and prospectives. Vol. 1. New York: Columbia University Press; 1977:179–201.

    Google Scholar 

  • Vasil, I. K. Somatic embryogenesis and its consequences in gramineae. In: Henke, R.; Hughes, K.; Constantin, M.; Hollaender, A., eds. Tissue culture in forestry and agriculture. New York: Plenum Press; 1985:31–47.

    Google Scholar 

  • Vasil, I. K. Automation of plant propagation. Plant Cell Tiss. Organ Cult. 39:105–108; 1994.

    Google Scholar 

  • Vuylsteke, D.; Swennen, R.; Wilson, G. F.; DeLanghe, E. Phenotypic variation among in vitro propagated plantain (Musa sp. cultivar AAB). Sci. Hort. 36:79–88; 1988.

    Google Scholar 

  • Wakasa, K. Variations in plants differentiated from the tissue culture of pineapple. Jpn J. Breed 29:13–22; 1979.

    Google Scholar 

  • Wang, P. J.; Charles, A. Micropropagation through meristem culture. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, HighTech and micropropagation I. Vol. 17. New York: Springer Verlag; 1991:32–52.

    Google Scholar 

  • Weigel, R.; Wolf, R.; Heseman, C. V. Mitochondrial DNA variation in plants regenerated from embrygenic callus cultures of cms triticale. Theor. Appl. Genet. 91:1237–1241; 1995.

    CAS  Google Scholar 

  • Williams, L.; Collins, H. A. Growth and cytology of celery plants derived from tissue culture. Ann. Bot. (Lond.) 40:333–338; 1976.

    Google Scholar 

  • Wintz, H. Analysis of heteroplasmy in a cytoplasmic mutant of maize. Plant Physiol. Biochem. 32:649–653; 1994.

    CAS  Google Scholar 

  • Zehr, B. E.; Williams, M. E.; Duncan, R. D.; Widholm, J. M. Somaclonal variation among the progeny of plants regenerated from callus cultures of seven inbred lines of maize. Can. J. Bot. 65:491–499; 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Raina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, V., Raina, S.N. Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In Vitro Cell.Dev.Biol.-Plant 36, 319–330 (2000). https://doi.org/10.1007/s11627-000-0059-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0059-6

Key words

Navigation