Skip to main content
Log in

Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Simulated microgravity (SM) has been implicated in affecting diverse cellular pathways. Although there is emerging evidence that SM can alter cellular functions, its effect in cancer metastasis has not been addressed. Here, we demonstrate that SM inhibits migration, gelatinolytic activity, and cell proliferation of an A549 human lung adenocarcinoma cell line in vitro. Expression of antigen MKI67 and matrix metalloproteinase-2 (MMP2) was reduced in A549 cells stimulated by clinorotation when compared with the 1×g control condition, while overexpression of each gene improves ability of proliferation and migration, respectively, under SM conditions. These findings suggest that SM reduced the metastatic potential of human lung adenocarcinoma cells by altering the expression of MKI67 and MMP2, thereby inhibiting cell proliferation, migration, and invasion, which may provide some clues to study cancer metastasis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Barjaktarovic Z.; Nordheim A.; Lamkemeyer T.; Fladerer C.; Madlung J.; Hampp R. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J. Exp. Bot. 58: 4357–4363; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Buravkova L. B.; Rykova M. P.; Grigorieva V.; Antropova E. N. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. J. Gravit. Physiol.: A Journal of the International Society for Gravitational Physiology 11: P177–P180; 2004.

    CAS  Google Scholar 

  • Chaffer C. L.; Weinberg R. A. A perspective on cancer cell metastasis. Science 331: 1559–1564; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Dai Z. Q.; Wang R.; Ling S. K.; Wan Y. M.; Li Y. H. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif. 40: 671–684; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Dome B.; Somlai B.; Tamasy A.; Peter L.; Tovari J.; Horvath A.; Timar J. Prognosis and invasion marker expression of cutaneous melanoma. Metastasis-associated genes (nm23, CD44v3, MMP2. Orv. Hetil. 140: 235–240; 1999.

    PubMed  CAS  Google Scholar 

  • Fidler I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3: 453–458; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Gerathewohl S. J. Physics and psychophysics of weightlessness; visual perception. J. Aviat. Med. 23: 373–395; 1952.

    PubMed  CAS  Google Scholar 

  • Giard D. J.; Aaronson S. A.; Todaro G. J.; Arnstein P.; Kersey J. H.; Dosik H.; Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51: 1417–1423; 1973.

    PubMed  CAS  Google Scholar 

  • Grimm D.; Bauer J.; Kossmehl P.; Shakibaei M.; Schoberger J.; Pickenhahn H.; Schulze-Tanzil G.; Vetter R.; Eilles C.; Paul M. et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J.: Official Publication of the Federation of American Societies for Experimental Biology 16: 604–606; 2002.

    CAS  Google Scholar 

  • Infanger M.; Kossmehl P.; Shakibaei M.; Bauer J.; Kossmehl-Zorn S.; Cogoli A.; Curcio F.; Oksche A.; Wehland M.; Kreutz R. et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324: 267–277; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova K.; Eiermann P.; Tsiockas W.; Hauslage J.; Hemmersbach R.; Gerzer R. Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightlessness. Acta Astronaut. 68: 652–655; 2011.

    Article  CAS  Google Scholar 

  • Kacena M. A.; Todd P.; Gerstenfeld L. C.; Landis W. J. Experiments with osteoblasts cultured under varying orientations with respect to the gravity vector. Cytotechnology 39: 147–154; 2002.

    Article  PubMed  Google Scholar 

  • Kang C. Y.; Zou L.; Yuan M.; Wang Y.; Li T. Z.; Zhang Y.; Wang J. F.; Li Y.; Deng X. W.; Liu C. T. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur. J. Appl. Physiol. 111: 2131–2138; 2011.

    Article  PubMed  Google Scholar 

  • Kondratiev S.; Gnepp D. R.; Yakirevich E.; Sabo E.; Annino D. J.; Rebeiz E.; Laver N. V. Expression and prognostic role of MMP2, MMP9, MMP13, and MMP14 matrix metalloproteinases in sinonasal and oral malignant melanomas. Hum. Pathol. 39: 337–343; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Martin B.; Paesmans M.; Mascaux C.; Berghmans T.; Lothaire P.; Meert A. P.; Lafitte J. J.; Sculier J. P. Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br. J. Cancer 91: 2018–2025; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Meloni M. A.; Galleri G.; Camboni M. G.; Pippia P.; Cogoli A.; Cogoli-Greuter M. Modeled microgravity affects motility and cytoskeletal structures. J. Gravit. Physiol.: A Journal of the International Society for Gravitational Physiology 11: P197–P198; 2004.

    CAS  Google Scholar 

  • Pantel K.; Brakenhoff R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4: 448–456; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pietsch J.; Bauer J.; Egli M.; Infanger M.; Wise P.; Ulbrich C.; Grimm D. The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med. 11: 350–364; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Protzel C.; Knoedel J.; Zimmermann U.; Woenckhaus C.; Poetsch M.; Giebel J. Expression of proliferation marker Ki67 correlates to occurrence of metastasis and prognosis, histological subtypes and HPV DNA detection in penile carcinomas. Histol. Histopathol. 22: 1197–1204; 2007.

    PubMed  CAS  Google Scholar 

  • Qian A. R.; Zhang W.; Xie L.; Weng Y.; Yang P.; Wang Z.; Hu L.; Xu H.; Tian Z.; Shang P. Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronaut. 63: 947–958; 2008.

    Article  Google Scholar 

  • Qu L.; Chen H.; Liu X.; Bi L.; Xiong J.; Mao Z.; Li Y. Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells. Neurochem. Res. 35: 1445–1454; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sethi N.; Kang Y. Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nat. Rev. Cancer 11: 735–748; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Shi F.; Wang Y. C.; Zhao T. Z.; Zhang S.; Du T. Y.; Yang C. B.; Li Y. H.; Sun X. Q. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One 7: e40365; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Soomro I. N.; Holmes J.; Whimster W. F. Predicting prognosis in lung cancer: use of proliferation marker, Ki67 monoclonal antibody. JPMA J. Pakistan Med. Assoc. 48: 66–69; 1998.

    CAS  Google Scholar 

  • Sozzi G.; Conte D.; Leon M.; Ciricione R.; Roz L.; Ratcliffe C.; Roz E.; Cirenei N.; Bellomi M.; Pelosi G. et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol.: Official Journal of the American Society of Clinical Oncology 21: 3902–3908; 2003.

    Article  CAS  Google Scholar 

  • Sundaresan A.; Pellis N. R. Cellular and genetic adaptation in low-gravity environments. Ann. N. Y. Acad. Sci. 1161: 135–146; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Takeda M.; Magaki T.; Okazaki T.; Kawahara Y.; Manabe T.; Yuge L.; Kurisu K. Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci. Lett. 463: 54–59; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Vassy J.; Portet S.; Beil M.; Millot G.; Fauvel-Lafeve F.; Gasset G.; Schoevaert D. Weightlessness acts on human breast cancer cell line MCF-7. Adv. Space Res. 32: 1595–1603; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Vassy J.; Portet S.; Beil M.; Millot G.; Fauvel-Lafeve F.; Karniguian A.; Gasset G.; Irinopoulou T.; Calvo F.; Rigaut J. P. et al. The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J.: Official Publication of the Federation of American Societies for Experimental Biology 15: 1104–1106; 2001.

    CAS  Google Scholar 

  • Vihinen P.; Kahari V. M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer J. Int. Du Cancer 99: 157–166; 2002.

    Article  CAS  Google Scholar 

  • Walther I.; Pippia P.; Meloni M. A.; Turrini F.; Mannu F.; Cogoli A. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett. 436: 115–118; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y.; An L.; Jiang Y.; Hang H. Effects of simulated microgravity on embryonic stem cells. PLoS One 6: e29214; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T.; Yoshimoto M.; Nishiyama Y.; Okubo Y.; Makimura K. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat. Microbiol. Immunol. 56: 441–446; 2012.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Pre-Research Foundation of Military Equipment of China (grant no. 9140A26040312JB10078), the Key Program of Medical Research in the Military “12th 5-year Plan”, China (no. BWS12J046), the China Postdoctoral Science Foundation (grant no. 201104776), the Defense Medical Fund of China (grant no. 06Z048), the State Key Laboratory of Space Medicine Fundamentals and Application, the General Financial Grant from the China Postdoctoral Science Foundation (no. 2012M521873), and the China Astronaut Research and Training Center (grant nos. SMFA11A01 and SMFA11K02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changting Liu.

Additional information

Editor: T. Okamoto

De Chang and Huiwen Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D., Xu, H., Guo, Y. et al. Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line. In Vitro Cell.Dev.Biol.-Animal 49, 170–177 (2013). https://doi.org/10.1007/s11626-013-9581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9581-9

Keywords

Navigation