Skip to main content
Log in

Effects of processing variables on the morphology and diameter of electrospun poly(amino acid ester)phosphazene nanofibers

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Poly[(alanino ethyl ester)0.67 (glycino ethyl ester)0.33 phosphazene (PAGP) was synthesized, and morphology and diameter of the electrospun PAGP nanofibers were systematically evaluated by using a cool field emission scanning electron microscope (SEM) with changing the important processing variables such as applied voltage, polymeric concentration, and ambient temperature. The average diameter of PAGP nanofibers was inversely proportional to the applied voltage, but increased with the increase of solution concentration. Lower environmental temperature was unfavorable due to the nanofibers conglutination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lannutti J, Reneker D, Ma T, et a1. Electrospinning for Tissue Engineering Scaffolds[J]. Mater. Sci. and Eng. C, 2007, 27(3):504–509

    Article  CAS  Google Scholar 

  2. Liang DH, Hsiao BS, Chu BJ. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications[J]. Adv. Drug Delivery Rev., 2007, 59(14):1 392–1 412

    Article  CAS  Google Scholar 

  3. You Y, Min BM, Lee SJ, et a1. In Vitro Degradation Behavior of Electrospun Polyglycolide, Polylactide, and Poly (lactide-coglycolide)[ J]. J. Appl. Polym. Sci., 2005, 95(2):193–200

    Article  CAS  Google Scholar 

  4. Li MY, Mondrinos MJ, Gandhi MR, et a1. Electrospun Protein Fibers as Matrices for Tissue Engineering[J]. Biomaterials, 2005, 26(30):5 999–6 008

    Article  CAS  Google Scholar 

  5. Geng XY, Kwon OH, Jang JH. Electrospinning of Chitosan Dissolved in Concentrated Acetic Acid Solution[J]. Biomaterials, 2005, 26(27):5 427–5 432

    Article  CAS  Google Scholar 

  6. Smith LA, Ma PX. Nano-Fibrous Scaffolds for Tissue Engineering[J]. Colloid. and Surf. B:Biointerfaces, 2004, 39(3):125–131

    Article  CAS  Google Scholar 

  7. Sill TJ, Recum HAV. Electrospinning: Applications in Drug Delivery and Tissue Engineering[J]. Biomaterials, 2008, 29(13):1 989–2 006

    Article  CAS  Google Scholar 

  8. Buchko CJ, Chen LC, Shen Y, et a1. Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films[J]. Polymer, 1999, 40(26):7 397–7 407

    Article  CAS  Google Scholar 

  9. Deitzel JM, Kleinmeyer J, Harris D, et a1. The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles[J]. Polymer, 2001, 42(1):261–272

    Article  CAS  Google Scholar 

  10. Tuteja A, Choi W, Ma ML, et a1. Designing Superoleophobic Surfaces[J]. Science, 2007, 318(5856):1 618–1 622

    Article  CAS  Google Scholar 

  11. Kumbar SG, Nukavarapu SP, James R, et a1. Electrospun Poly (lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering[J]. Biomaterials, 2008, 29(30):4100–4107

    Article  CAS  Google Scholar 

  12. Mo XM, Xu CY, Kotaki M, et a1. Electrospun P(LLA-CL) Nanofiber: a Biomimetic Extracellular Matrix for Smooth Muscle Cell and Endothelial Cell Proliferation[J]. Biomaterials, 2004, 25(10): 1 883–1 890

    Article  CAS  Google Scholar 

  13. Demir MM, Yilgor I, Yilgor E, et a1. Electrospinning of Polyurethane Fibers[J]. Polymer, 2002, 43(11):3303–3309

    Article  CAS  Google Scholar 

  14. Jaeger R, Schonherr H, Vancso GJ. Chain Packing in Electro-Spun Poly (ethylene oxide) Visualized by Atomic Force Microscopy[J]. Macromolecules, 1996, 29(23):7 634–7 636

    Article  CAS  Google Scholar 

  15. Allcock HR, Steely LB, Singh A. Hydrophobic and Superhydrophobic Surfaces from Polyphosphazenes[J]. Polym. Int., 2006, 55(6):621–625

    Article  CAS  Google Scholar 

  16. Singh A, Krogman NR, Sethuraman S, et al. Effect of Side Group Chemistry on the Properties of Biodegradable L-Alanine Cosubstituted Polyphosphazenes[J]. Biomacromolecules, 2006, 7(3):914–918

    Article  CAS  Google Scholar 

  17. Sethuraman S, Nair LS, Amin SE, et al. In Vivo Biodegradability and Biocompatibility Evaluation of Novel Alanine Ester based Polyphosphazenes in a Rat Model[J]. J. Biomed. Mater. Res. Part A, 2006, 77A(4):679–687

    Article  CAS  Google Scholar 

  18. Carampin P, Conconi MT, Lora S, et al. Electrospun Polyphosphazene Nanofibers for in Vitro Rat Endothelial Cells Proliferation[J]. J. Biomed. Mater. Res. Part A, 2007, 80A(3):661–668

    Article  CAS  Google Scholar 

  19. Nair LS, Bhattacharyya S, Bender JD, et al. Fabrication and Optimization of Methyl -phenoxy Substituted Polyphosphazene Nanofibers for Biomedical Applications[J]. Biomacromolecules, 2004, 5(6):2 212–2 220

    Article  CAS  Google Scholar 

  20. Zhang T, Hong T, Wu ZP, et al. Study on the Relationship Between Structure and Properties of Poly[(amino acid ester)phosphazene] (1): Synthesis and Characterization[J]. Poly. Mat. Sci. Eng., 2006, 22(6):90–94 (In Chinese)

    Article  Google Scholar 

  21. Solomon OF, Ciuta IZ. Détermination de la Viscosité Intrinsèque de Solutions de Polymères par une Simple Détermination de la Viscosité[J]. J. Appl. Polym. Sci., 1962, 6(24):683–686

    Article  CAS  Google Scholar 

  22. Sulkowski W, Makarucha B, Sulkowska A, et al. Synthesis and Spectroscopic Studies of Cyclo- and Polyphosphazenes[J]. European Polymer Journal, 2000, 36(7): 1 519–1 524

    Article  CAS  Google Scholar 

  23. Fong H, Reneker DH, Chun I. Beaded Nanofibers Formed during Electrospinning[J]. Polymer, 1999, 40(16): 4 585–4 592

    Article  CAS  Google Scholar 

  24. Fong H, Reneker DH. Elastomeric Nanofibers of Styrene-Butadiene-Styrene Triblock Copolymer[J]. J. Polym. Sci: Part B: Polym. Phys., 1999, 37(24):3 488–3 493

    Article  CAS  Google Scholar 

  25. Megelski S, Stephens JS, Chase DB, et al. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers[J]. Macromolecules, 2002, 35(22):8456–8466

    Article  CAS  Google Scholar 

  26. Reneker DH, Yarin AL, Fong H, et al. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning[J]. Joural of Applied Physics, 2000, 87(9):4 531–4 537

    CAS  Google Scholar 

  27. Huang ZM, Zhang YZ, Kotaki M, et al. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites[J]. Composites Science and Technology, 2003, 63(15):2 223–2 253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Lin  (林益军).

Additional information

Funded by the National Natural Science Foundation of China (No.50873012)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Deng, Q. & Jin, R. Effects of processing variables on the morphology and diameter of electrospun poly(amino acid ester)phosphazene nanofibers. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 27, 207–211 (2012). https://doi.org/10.1007/s11595-012-0438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-012-0438-y

Key words

Navigation