Skip to main content
Log in

Electrochemical lithium storage capacity of nickel mono-oxide loaded anatase titanium dioxide nanotubes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The NiO loaded anatase TiO2 nanotubes have been successfully synthesized. It was found that NiO nanoparticles could prevent the nanotubular morphology from destruction during the dehydration of interlayered –OH groups of NTA and improve the electronic conductivity of TiO2 nanotubes. Galvanostatic battery testing showed that the NiO loaded anatase TiO2 nanotubes electrode exhibit excellent rate capability and good cycle performance. The enhanced performances can be attributed to its favorable tubular morphology and the better electrical contact between NiO and TiO2 nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen JS, Lou XW (2009) Electrochem Commun 11:2332

    Article  CAS  Google Scholar 

  2. Guo YG, Hu YS, Maier SW (2007) Adv Mater 19:2087

    Article  CAS  Google Scholar 

  3. Chen JS, Lou XW (2010) J Power Sources 195:2905

    Article  CAS  Google Scholar 

  4. Sudant G, Baudrin E, Larcher D, Tarascon JM (2005) J Mater Chem 15:1263

    CAS  Google Scholar 

  5. Chen JZ, Yang L, Tang YF (2010) J Power Sources 195:6893

    Article  CAS  Google Scholar 

  6. Wang YF, Wu MY, Zhang WF (2008) Electrochim Acta 53:7863

    Article  CAS  Google Scholar 

  7. Kim MG, Kim HJ, Cho J (2010) J Electrochem Soc 157:A802

    Article  CAS  Google Scholar 

  8. Liu DW, Xiao P, Zhang YH, Garcia BB, Zhang QF, Guo Q, Champion R, Cao GZ (2008) J Phys Chem C 112:11175

    Article  CAS  Google Scholar 

  9. Wang Q, Wen ZH, Li JH (2006) Inorg Chem 45:6944

    Article  CAS  Google Scholar 

  10. Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P (2009) Chem Mater 21:63

    Article  CAS  Google Scholar 

  11. Fu LJ, Liu H, Zhang HP, Li C, Zhang T, Wu YP, Wu HQ (2006) J Power Sources 159:219

    Article  CAS  Google Scholar 

  12. Park CM, Chang WS, Jung H, Kim JH, Sohn HJ (2009) Electrochem Commun 11:2165

    Article  CAS  Google Scholar 

  13. Das SK, Bhattacharyya AJ (2011) J Electrochem Soc 158:A705

    Article  CAS  Google Scholar 

  14. Uchiyama H, Hosono E, Zhou HS, Imai H (2009) Solid State Ionics 180:956

    Article  CAS  Google Scholar 

  15. Fang D, Huang KL, Liu SQ, Li ZJ (2008) J Alloys Compd 464:L5

    Article  CAS  Google Scholar 

  16. He BL, Dong B, Li HL (2007) Electrochem Commu 9:425

    Article  CAS  Google Scholar 

  17. Cheng TC, Teng H (2006) Chem Mater 18:367

    Article  Google Scholar 

  18. Nian JN, Teng H (2006) J Phys Chem B 110:4193

    Article  CAS  Google Scholar 

  19. Bavykin BDV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807

    Article  CAS  Google Scholar 

  20. An LP, Gao XP, Li GR, Yan TY, Zhu HY, Shen PW (2008) Electrochim Acta 53:4573

    Article  CAS  Google Scholar 

  21. Yang JJ, Jin ZS, Wang XD, Li W, Zhang JW, Zhang SL, Zhang ZJ (2003) Dalton Trans 9:3898

    Article  Google Scholar 

  22. Zhang M, Jin ZS, Zhang JW, Guo XY, Yang JJ, Li W, Wang XD, Zhang ZJ (2004) J Mol Catal A Chem 217:203

    Article  CAS  Google Scholar 

  23. Sun XM, Li YD (2003) Chem Eur J 9:2229

    Article  CAS  Google Scholar 

  24. Wang KP, Teng H (2009) Phys Chem Chem Phys 11:9489

    Article  CAS  Google Scholar 

  25. Nian JN, Chen SA, Tsai CC, Teng H (2006) J Phys Chem B110:25817

    Google Scholar 

  26. Schulze M, Reissner R, Lorenz M, Radke U, Schnurnberger W (1999) Electrochim Acta 44:3969

    Article  CAS  Google Scholar 

  27. Niasari MS, Mohandes F, Davar F, Mazaheri M, Monemzadeh M, Yavarinia N (2009) Inorg Chim Acta 362:3691

    Article  Google Scholar 

  28. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) J Power Sources 81:902

    Article  Google Scholar 

  29. Hadjean RB, Ramos JPP (2007) J Power Sources 174:1188

    Article  Google Scholar 

  30. Needham SA, Wang GX, Liu HK (2006) J Power Sources 159:254

    Article  CAS  Google Scholar 

  31. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    Article  CAS  Google Scholar 

  32. Wang BL, Chen Q, Hu J, Li H, Hu YF, Peng LM (2005) Chem Phys Lett 406:95

    Article  CAS  Google Scholar 

  33. Krtil P, Fattakhova D, Kavan L, Burnside S, Gratzel M (2000) Solid State Ionics 135:101

    Article  CAS  Google Scholar 

  34. Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldts A, Lindquist SE (1997) J Phys Chem B 101:7717

    Article  Google Scholar 

  35. Gao XP, Lan Y, Zhu HY, Liu JW, Ge YP, Wu F, Song DY (2005) Electrochem Solid-State Lett 8:A26

    Article  CAS  Google Scholar 

  36. Kavan L, Rathousky J, Gratzel M, Shklover V, Zukal A (2000) J Phys Chem B 104:12012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from National Natural Science Foundation of China (Grant Nos. 50902045/E0213 and 20971037/B0111), Foundation of He’nan Scientific Committee (Grant No. 082102270040) and Foundation of He’nan Educational Committee (Grant No. 2008A150004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, J., Jin, Z. et al. Electrochemical lithium storage capacity of nickel mono-oxide loaded anatase titanium dioxide nanotubes. Ionics 18, 861–866 (2012). https://doi.org/10.1007/s11581-012-0691-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0691-2

Keywords

Navigation