Skip to main content
Log in

Is it possible to detect dendrite currents using presently available magnetic resonance imaging techniques?

Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The action currents of a dendrite, peripheral nerve or skeletal muscle create their own magnetic field. Many investigators have attempted to detect neural and dendritic currents directly using magnetic resonance imaging that can cause the phase of the spins to change. Our goal in this paper is to use the calculated magnetic field of a dendrite to estimate the resulting phase shift in the magnetic resonance signal. The field produced by a dense collection of simultaneously active dendrites may be just detectable under the most ideal circumstances, but in almost every realistic case the field cannot be detected using current MRI technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bandettini PA, Petridou N, Boduraka J (2005) Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? Appl Magn Reson 29:65–88

    Article  Google Scholar 

  2. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  PubMed  CAS  Google Scholar 

  3. Bodurka J, Bandettini PA (2002) Toward direct mapping of neuronal activity: MRI detection of ultraweak transient magnetic field changes. Magn Reson Med 47:1052–1058

    Article  PubMed  Google Scholar 

  4. Bodurka J, Jesmanowicz A, Hyde JS, Xu H, Estkowski L, Li SJ (1999) Current-induced magnetic resonance phase imaging. J Magn Reson 137:265–271

    Article  PubMed  CAS  Google Scholar 

  5. Callaghan PT (1990) Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 87:304–318

    Google Scholar 

  6. Cassara AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B (2008) Realistic simulations of neuronal activity: A contribution to the debate on direct detection of neuronal currents by MRI. NeuroImage 39:87–106

    Article  PubMed  CAS  Google Scholar 

  7. Cassara AM, Maraviglia B (2008) Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. NeuroImage 41:1228–1241

    Article  PubMed  CAS  Google Scholar 

  8. Chu R, de Zwart J, van Gelderen P, Fukunaga M, Kellman P, Holroyd T, Duyn JH (2004) Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response. Neuroimage 23:1059–1067

    Article  PubMed  Google Scholar 

  9. Gielen FLH, Roth BJ, Wikswo JP (1986) Capabilities of a toroid-amplifier system for magnetic measurement of current in biological tissue. IEEE Trans Biomed Eng 33:910–921

    Article  PubMed  CAS  Google Scholar 

  10. Gielen FLH, Friedman RN, Wikswo JP (1991) In vivo magnetic and electric recordings from nerve bundles and single motor units in mammalian skeletal muscle. J Gen Physiol 98:1043–1061

    Article  PubMed  CAS  Google Scholar 

  11. Hagberg GE, Bianciardi M, Maraviglia B (2006) Challenges for detection of neuronal currents by MRI. Magn Reson Med 24:483–493

    Google Scholar 

  12. Hennig J, Zhong K, Speck O (2008) MR-encephalography: fast multi-channel monitoring of brain physiology with magnetic resonance. NeuroImage 39:310–317

    Article  Google Scholar 

  13. Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186

    Article  PubMed  CAS  Google Scholar 

  14. Kamei H, Iramina K, Yoshlkawa K, Ueno S (1999) Neuronal current distribution imaging using magnetic resonance. IEEE Trans Magn 35:4109–4111

    Article  Google Scholar 

  15. Kaufman L, Kaufman JH, Wang J-Z (1991) On cortical folds and neuromagnetic fields. Electroenceph Clin Neurophysiol 79:211–229

    Article  PubMed  CAS  Google Scholar 

  16. Konn D, Gowland P, Bowtell R (2003) MRI detection of weak magnetic fields due to an extended current dipole in a conduction sphere: A model for direct detection of neuronal currents in the brain. Magn Reson Med 50:40–49

    Article  PubMed  Google Scholar 

  17. Kraus RH, Volegov P, Matlachov A, Espy M (2008) Toward direct neural current imaging by resonant mechanisms at ultra-low field. Neuroimage. 39:310–317

    Article  PubMed  Google Scholar 

  18. Kwong K, Brady T, Rosen B (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  PubMed  CAS  Google Scholar 

  19. Nunez PL, Srinivasan R (2006) Electric Fields of the Brain the Neurophysics of EEG, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  20. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependence on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  21. Paley MNJ, Chow LS, Whitby EW, Cook GG (2009) Modeling of axonal fields in the optic nerve for direct MR detection studies. Image Vision Comput 27:331–341

    Article  Google Scholar 

  22. Park TS, Lee SY (2007) Effects of neuronal magnetic field on MRI: Numerical analysis with axon and dendrite models. NeuroImage 35:531–538

    Article  PubMed  Google Scholar 

  23. Roth BJ, Wikswo JP (1985) The magnetic field of a single nerve axon: a comparison of theory and experiment. Biophys J 48:93–109

    Article  PubMed  CAS  Google Scholar 

  24. Sundaram P, Wells WM, Mulkern RV, Bubrick EJ, Bromfield EB, Munch M, Orbach DB (2010) Fast human brain magnetic resonance responses associated with epileptiform spikes. Magn Reson Med 64:1728–1738

    Article  PubMed  Google Scholar 

  25. Swinney KR, Wikswo JP (1980) A calculation of the magnetic field of a nerve action potential. Biophys J 32:719–732

    Article  PubMed  CAS  Google Scholar 

  26. Truong TK, Song AW (2006) Finding neuroelectric activity under magnetic field oscillations (NAMO) with magnetic resonance imaging in vivo. Proc Natl Acad Sci USA 103:12598–12601

    Article  PubMed  CAS  Google Scholar 

  27. van Egeraat JM, Friedman RN, Wikswo JP (1990) Magnetic field of a single muscle fiber: First measurement and a core conductor model. Biophys J 57:663–667

    Article  PubMed  Google Scholar 

  28. van Egeraat JM, Wikswo JP (1993) A model for axonal propagation incorporating both radial and axial ionic transport. Biophys J 64:1287–1298

    Article  PubMed  Google Scholar 

  29. van Egeraat JM, Stasaski R, Barach JP, Friedman RN, Wikswo JP (1993) The biomagnetic signature of a crushed axon: A comparison of theory and experiment. Biophys J 64:1299–1305

    Article  PubMed  Google Scholar 

  30. Wijesinghe RS, Gielen FLH, Wikswo JP (1991) A model for compound action potentials and currents in a nerve bundle III: A comparison of the conduction velocity distributions calculated from compound action currents and potentials. Ann Biomed Eng 18:97–121

    Article  Google Scholar 

  31. Wijesinghe RS, Roth BJ (2009) Detection of peripheral nerve and skeletal muscle action currents using magnetic resonance imaging. Ann Biomed Eng 37(11):2402–2406

    Article  PubMed  Google Scholar 

  32. Wikswo JP, van Egeraat JM (1991) Cellular magnetic fields: Fundamental and applied measurements on nerve axons, peripheral nerve bundles, and skeletal muscle. J Clin Neurophysiol 8:170–188

    Article  PubMed  Google Scholar 

  33. Wikswo JP, Barach JP, Freeman JA (1980) Magnetic field of a nerve impulse: First measurements. Science 208:53–55

    Article  PubMed  CAS  Google Scholar 

  34. Wikswo JP, Henry WP, Freidman RN, Kilroy WA, Wijesinghe RS, van Egeraat JM, Milek MA (1990) Intraoperative recording of the magnetic field of a human nerve. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum, New York, pp 137–140

    Google Scholar 

  35. Woosley JK, Roth BJ, Wikswo JP (1985) The magnetic field of a single axon: a volume conductor model. Math Biosci 76:1–36

    Article  Google Scholar 

  36. Xue X, Chen X, Grabowski T, Xiong J (2009) Direct MRI mapping of neuronal activity evoked by electrical stimulation of the median nerve at the right wrist. Magn Reson Med 61:1073–1082

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health grant R01EB008421 and the Indiana Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjith S. Wijesinghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jay, W.I., Wijesinghe, R.S., Dolasinski, B.D. et al. Is it possible to detect dendrite currents using presently available magnetic resonance imaging techniques?. Med Biol Eng Comput 50, 651–657 (2012). https://doi.org/10.1007/s11517-012-0899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0899-3

Keywords

Navigation