Skip to main content
Log in

Tail behavior of supremum of a random walk when Cramér’s condition fails

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We investigate tail behavior of the supremum of a random walk in the case that Cramér’s condition fails, namely, the intermediate case and the heavy-tailed case. When the integrated distribution of the increment of the random walk belongs to the intersection of exponential distribution class and O-subexponential distribution class, under some other suitable conditions, we obtain some asymptotic estimates for the tail probability of the supremum and prove that the distribution of the supremum also belongs to the same distribution class. The obtained results generalize some corresponding results of N. Veraverbeke. Finally, these results are applied to renewal risk model, and asymptotic estimates for the ruin probability are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen E S. On the collective theory of risk in case of contagion between claims. In: Transactions XVth International Congress of Actuaries, New York, 1957, II: 219–229

    Google Scholar 

  2. Asmussen S, Foss S, Korshunov D. Asymptotics for sums of random variables with local subexponential behaviour. J Theoret Probab, 2003, 16: 489–518

    Article  MathSciNet  MATH  Google Scholar 

  3. Asmussen S, Kalashnikov V, Konstantinides D, Klüppelberg C, Tsitsiashvili G. A local limit theorem for random walk maxima with heavy tails. Statist Probab Lett, 2002, 56: 399–404

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertoin J, Doney R A. Some asymptotic results for transient random walks. Adv Appl Probab, 1996, 28: 207–226

    Article  MathSciNet  MATH  Google Scholar 

  5. Borovkov A A. Stochastic Processes in Queueing. New York: Springer, 1976

    Book  MATH  Google Scholar 

  6. Chen G, Wang Y, Cheng F. The uniform local asymptotics of the overshoot of a random walk with heavy-tailed increments. Stoch Models, 2009, 25: 508–521

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Y, Wang L, Wang Y. Uniform asymptotics for the finite-time ruin probabilities of two kinds of nonstandard bidimensional risk models. J Math Anal Appl, 2013, 401: 114–129

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng D, Ni F, Pakes A G, Wang Y. Some properties of the exponential distribution class with applications to risk theory. J Korean Statist Soc, 2012, 41: 515–527

    Article  Google Scholar 

  9. Chistyakov V P. A theorem on sums of independent positive random variables and its applications to branching process. Theory Probab Appl, 1964, 9: 640–648

    Article  Google Scholar 

  10. Chover J, Ney P, Wainger S. Functions of probability measures. J Anal Math, 1973, 26: 255–302

    Article  MathSciNet  MATH  Google Scholar 

  11. Chover J, Ney P, Wainger S. Degeneracy properties of subcritical branching processes. Ann Probab, 1973, 1: 663–673

    Article  MathSciNet  MATH  Google Scholar 

  12. Cui Z, Wang Y, Wang K. Asymptotics for the moments of the overshoot and undershoot of a random walk. Adv Appl Probab, 2009, 41: 469–494

    Article  MathSciNet  MATH  Google Scholar 

  13. Denisov D, Foss S, Korshunov D. On lower limits and equivalences for distribution tails of randomly stopped sums. Bernoulli, 2008, 14(2): 391–404

    Article  MathSciNet  MATH  Google Scholar 

  14. Embrechts P, Goldie C M. On closure and factorization properties of subexponential tails. J Aust Math Soc Ser A, 1980, 29: 243–256

    Article  MathSciNet  MATH  Google Scholar 

  15. Embrechts P, Goldie C M. On convolution tails. Stochastic Process Appl, 1982, 13: 263–278

    Article  MathSciNet  MATH  Google Scholar 

  16. Embrechts P, Veraverbeke N. Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance Math Econom, 1982, 1: 55–72

    Article  MathSciNet  MATH  Google Scholar 

  17. Feller W. An Introduction to Probability Theory and Its Applications, Vol II. 2nd ed. New York: Wiley, 1971

    MATH  Google Scholar 

  18. Foss S, Korshunov D, Zachry S. An Introduction to Heavy-tailed and Subexponential Distributions. New York: Springer, 2013

    Book  MATH  Google Scholar 

  19. Klüppelberg C. Subexponential distributions and characterization of related classes. Probab Theory Related Fields, 1989, 82: 259–269

    Article  MathSciNet  MATH  Google Scholar 

  20. Klüppelberg C. Asymptotic ordering of distribution functions and convolution semigroups. Semigroup Forum, 1990, 40: 77–92

    Article  MathSciNet  MATH  Google Scholar 

  21. Klüppelberg C, Stadtmüller U. Ruin probabilities in the presence of heavy tails and interest rates. Scand Act J, 1998, (1): 49–58

    Article  Google Scholar 

  22. Klüppelberg C, Villasenor J A. The full solution of the convolution closure problem for convolution-equivalent distributions. J Math Anal Appl, 1991,160: 79–92

    Article  MathSciNet  MATH  Google Scholar 

  23. Korshunov D. On distribution tail of the maximum of a random walk. Stochastic Process Appl, 1997, 72: 97–103

    Article  MathSciNet  MATH  Google Scholar 

  24. Leipus R, Šiaulys J. Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes. Insurance Math Econom, 2007, 40: 498–508

    Article  MathSciNet  MATH  Google Scholar 

  25. Leslie J R. On the non-closure under convolution of the subexponential family. J Appl Probab, 1989, 26: 58–66

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin J, Wang Y. Some new example and properties of O-subexponential distributions. Statist Probab Lett, 2012, 82: 427–432

    Article  MathSciNet  MATH  Google Scholar 

  27. Pakes A G. Convolution equivalence and infinite divisibility. J Appl Probab, 2004, 41: 407–424

    Article  MathSciNet  MATH  Google Scholar 

  28. Pitman E J G. Subexponential distribution functions. J Aust Math Soc Ser A, 1980, 29: 337–347

    Article  MathSciNet  MATH  Google Scholar 

  29. Shimura T, Watanabe T. Infinite divisibility and generalized subexponentiality. Bernoulli, 2005, 11: 445–469

    Article  MathSciNet  MATH  Google Scholar 

  30. Su C, Chen J, Hu Z. Some discussions on the class L(γ). J Math Sci, 2004, 122: 3416–3425

    Article  MathSciNet  MATH  Google Scholar 

  31. Tang Q. Small Probability Problems in the Random Risk Model in Insurance and Financial. Ph D Thesis, University of Science and Technology of China, Hefei, 2001 (in Chinese)

    Google Scholar 

  32. Tang Q. Asymptotics for the finite time ruin probability in the renewal model with consistent variation. Stoch Models, 2004, 20: 281–297

    Article  MathSciNet  MATH  Google Scholar 

  33. Veraverbeke N. Asymptotic behaviour of Wiener-Hopf factors of a random walk. Stochastic Process Appl, 1977, 5: 27–37

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang K, Wang Y, Gao Q. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate. Methodol Comput Appl Probab, 2013, 15: 109–124

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang Y, Wang K. Asymptotics of the density of the supremum of a random walk with heavy-tailed increments. J Appl Probab, 2006, 43: 874–879

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang Y, Wang K. Equivalent conditions of asymptotics for the density of the supremum of a random walk in the intermediate case. J Theoret Probab, 2009, 22: 281–293

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang Y, Cui Z, Wang K, Ma X. Uniform asymptotics of the finite-time ruin probability for all times. J Math Anal Appl, 2012, 390: 208–223

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang Y, Wang K. Random walks with non-convolution equivalent increments and their applications. J Math Anal Appl, 2011, 374: 88–105

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang Y, Yang Y, Wang K, Cheng D. Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications. Insurance Math Econom, 2007, 42: 256–266

    Article  MathSciNet  Google Scholar 

  40. Watanabe T. Convolution equivalence and distributions of random sums. Probab Theory Related Fields, 2008, 142: 367–397

    Article  MathSciNet  MATH  Google Scholar 

  41. Watanabe T, Yamamuro K. Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron J Probab, 2010, 15: 44–74

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang Y, Wang Y. Asymptotics for ruin probability of some negatively dependent risk models with a constant interest rate and dominatedly-varying tailed claims. Statist Probab Lett, 2010, 80: 143–154

    Article  MathSciNet  MATH  Google Scholar 

  43. Yin C, Zhao X, Hu F. Ladder height and supremum of a random walk with applications in risk theory. Acta Math Sci Ser A Chin Ed, 2009, 29(1): 38–47 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  44. Yu C, Wang Y, Cui Z. Lower limits and upper limits for tails of random sums supported on R. Statist Probab Lett, 2010, 80: 1111–1120

    Article  MathSciNet  MATH  Google Scholar 

  45. Zong G. Finite-time ruin probability of a nonstandard compound renewal risk model with constant force of interest. Front Math China, 2010, 5(4): 801–809

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuebao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Wang, Y. Tail behavior of supremum of a random walk when Cramér’s condition fails. Front. Math. China 9, 431–453 (2014). https://doi.org/10.1007/s11464-013-0302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-013-0302-1

Keywords

MSC

Navigation