Skip to main content
Log in

Assessing the biogenicity and syngenicity of candidate bioalteration textures in pillow lavas of the ∼2.52 Ga Wutai greenstone terrane of China

  • Articles
  • Geology
  • Published:
Chinese Science Bulletin

Abstract

Microorganisms that inhabit sub-seafloor lavas are capable of etching volcanic glass and creating micron-sized tunnels and pits. Mineralization of these bioalteration traces ensures that these textures survive deformation and transformation of the host glass to metamorphic minerals. The fossil record of such bioalteration textures extends far beyond volcanic glass from in-situ oceanic crust to include meta-volcanic glass from ophiolites and Precambrian greenstone belts. Investigation of petrographic thin section reported here from ∼2.52 Ga tholeiitic pillow lavas from the Wutai Group of N. China found filamentous micro-textures. Laser Raman spectroscopy confirmed that these textures are mineralized by titanite. Moreover, the Wutai micro-textures are comparable in size, morphology and distribution to bioalteration textures from Archean greenschist facies pillow lavas. In-situ U-Pb dating of the titanite by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) gives an age of 1.81 ± 0.12 Ga (2σ, n=22, 206Pb/238U weighted average). This provides a minimum age for the mineralization of these candidate bioalteration textures and corresponds to a regional metamorphic event. This also represents a minimum age estimate for the timing of bioalteration and is compatible with the existence of a Late Archean-Proterozoic sub-seafloor biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Furnes H, Banerjee N R, Muehlenbachs K, et al. Early life recorded in Archean pillow lavas. Science, 2004, 304: 578–581

    Article  Google Scholar 

  2. Furnes H, McLoughlin N, Muehlenbachs K, et al. Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time — a review. In: Dilek Y, Furnes H, Muehlenbachs K, eds. Links Between Geological Processes, Microbial Activities and Evolution of Life. Heidelberg: Springer Verlag, 2007. 1–68

    Google Scholar 

  3. Banerjee N R, Simonetti A, Furnes H, et al. Direct dating of Archean microbial ichnofossils. Geology, 2007, 35: 487–490

    Article  Google Scholar 

  4. Furnes H, Staudigel H, Thorseth I H, et al. Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosyst, 2001, 2, doi: 10.1029/2000GC000150

  5. Fisk M R, Giovannoni S J, Thorseth I H. The extent of microbial life in the volcanic crust of the ocean basins. Science, 1998, 281: 978–979

    Article  Google Scholar 

  6. McLoughlin N, Furnes H, Banerjee N R, et al. Ichnotaxonomy of Microbial Trace Fossils in Volcanic Glass. J Geol Soc London, 2009, 166: 159–170

    Article  Google Scholar 

  7. Staudigel H, Furnes H, McLoughlin N, et al. 3.5 Billion years of glass bioalteration: Volcanic rocks as a basis for microbial life? Earth-Sci Rev, 2008, 89: 156–176

    Article  Google Scholar 

  8. Ross K A, Fisher R V. Biogenic grooving on glass shards. Geology, 1986, 14: 571–573

    Article  Google Scholar 

  9. Santelli C M, Orcutt B N, Banning E, et al. Abundance and Diversity of microbial Life in ocean crust. Nature, 2008, 453: 653–657

    Article  Google Scholar 

  10. Mason O U, Stingl U, Wilhelm L J, et al. The phylogeny of endolithic microbes associated with marine basalts. Environ Microbiol, 2007, 9: 2539–2550

    Article  Google Scholar 

  11. Giovannoni S J, Fisk M R, Mullins T D, et al. Genetic evidence for endolithic microbial life colonizing basalic glass/seawater interfaces. In: Alt J, Kinoshita H, Stokking L B, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drill. Program, College Station, Texas, 1996, 148: 207–214

    Google Scholar 

  12. Torsvik T, Furnes H, Muehlenbachs K, et al. Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett, 1998, 162: 165–176

    Article  Google Scholar 

  13. Bach W, Edwards K J. Iron and sulphide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta, 2003, 67: 3871–3887

    Article  Google Scholar 

  14. Thorseth I H, Torsvik T, Furnes H, et al. Microbes play an important role in the alteration of oceanic crust. Chem Geol, 1995, 126: 137–146

    Article  Google Scholar 

  15. Staudigel H, Yayanos A, Chastain R, et al. Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett, 1998, 164: 233–244

    Article  Google Scholar 

  16. Walton A W. Microtubules in basalt glass from Hawaii Scientific Drilling Project #2 phase 1 core and Hilina slope, Hawaii: evidence of the occurrence and behaviour of endolithic microorganisms. Geobiology, 2008, 6: 351–364

    Article  Google Scholar 

  17. Furnes H, Muehlenbachs K. Bioalteration recorded in ophiolitic pillow lavas. In: Dilek Y, Robinson P T, eds. Ophiolites in Earth’s History. Geol Soc Spec Publ Lond, 2003, 218: 415–426

  18. Furnes H, Muehlenbachs K, Torsvik T, et al. Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. Chem Geol, 2001, 173: 313–330

    Article  Google Scholar 

  19. Thorseth I H, Furnes H, Heldal M. The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 1992, 56: 845–850

    Article  Google Scholar 

  20. Thorseth I H, Torsvik T, Torsvik V, et al. Keldysh-98 Scientific party. Diversity of life in ocean floor basalts. Earth Planet Sci Lett, 2001, 194: 31–37

    Article  Google Scholar 

  21. Thorseth I H, Pedersen R B, Christie D M. Microbial alteration of 0–30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett, 2003, 215: 237–247

    Article  Google Scholar 

  22. Staudigel H, Furnes H, Kelley K, et al. The oceanic crust as a bioreactor. AGU Monograph, 2004, 144: 325–341

    Google Scholar 

  23. Fisk M, Staudigel H, Smith D C, et al. Evidence of microbial activity in the oldest ocean crust. Eos Trans Am Geophys Union, 1994, 80(Suppl): 84–85

    Google Scholar 

  24. Furnes H, Banerjee N R, Staudigel H, et al. Bioalteration textures in recent to mesoarchean pillow lavas: A petrographic signature of subsurface life in oceanic igneous rocks. Precambrian Res, 2007, 158: 156–176

    Article  Google Scholar 

  25. Banerjee N R, Furnes H, Muehlenbachs K, et al. Preservation of microbial biosignatures in 3.5 Ga pillow lavas from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett, 2006, 241: 707–722

    Article  Google Scholar 

  26. Staudigel H, Furnes H, Banerjee N R, et al. Microbes and Volcanos: A tale from the oceans, ophiolites and greenstone belts. GSA Today 2006, 16, doi: 10.1130/GSAT01610A.1

  27. Fliegel D, Simonetti, A, McLoughlin N, et al. In situ dating of the oldest morphological traces of life on Earth. Trans Am Geophys Union, Fall Meet, 2008, (Suppl): 89

  28. Furnes H, Banerjee N R, Muehlenbachs K, et al. Preservation of biosignatures in metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precambrian Res, 2005, 136: 125–137

    Article  Google Scholar 

  29. Schiffbauer J D, Yin L, Bodnar R J, et al. Ultrastructural and geochemical characterization of Archean-Paleoproterozoic Graphite Particles: Implications for Recognizing Traces of Life in Highly Metamorphosed Rocks. Astrobiology, 2007, 7: 684–704

    Article  Google Scholar 

  30. Zhu S X, Chen H N. Characteristics of Palaeoproterozic stromatolites in China. Precambrian Res, 1992, 57: 135–163

    Article  Google Scholar 

  31. Zhao G C. Paleoproterozoic assembly of the North China Craton. Geol Mag, 2001, 138: 87–91

    Article  Google Scholar 

  32. Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res, 2005, 136: 177–202

    Article  Google Scholar 

  33. Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Res, 2000, 103: 55–88

    Article  Google Scholar 

  34. Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 2001, 107: 45–73

    Article  Google Scholar 

  35. Wilde S A, Zhao, G C, Sun M. Late Archaean to Early Palaeoproterozoic Magmatic Events in the North China Craton: the Prelude to Amalgamation. Gondwana Res, 2002, 5: 85–94

    Article  Google Scholar 

  36. Kröner A, Wilde S A, Li J H, et al. Age and evolution of a Neoarchaean to early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. J Asian Earth Sci, 2005, 24: 577–595

    Article  Google Scholar 

  37. Kröner A, Wilde S A, O’Brien P J, et al. Field relationships, geochemistry, zircon ages and evolution of a Neoarchaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of Northern China. Acta Geol Sin, 2005, 79: 605–629

    Google Scholar 

  38. Kröner A, Wilde S A, Zhao G C, et al. Zircon geochronology of mafic dykes in the Hengshan Complex of northern China: evidence for late Palaeoproterozoic rifting and subsequent high-pressure event in the North China Craton. Precambrian Res, 2006, 146: 45–67

    Article  Google Scholar 

  39. Wang Z H, Wilde S A, Wang K Y, et al. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt: Neoarchaean magmatism and crustal growth in the North China Craton. Precambrian Res, 2004, 131: 323–343

    Article  Google Scholar 

  40. Liu S W, Pan Y M, Xie Q L, et al. Geochemistry of the Palaeoproterozoic Nanying Granitoid Gneisses: constraints on the tectonic setting of the Central Zone, North China Craton. J Asian Earth Sci, 2005, 24: 643–658

    Article  Google Scholar 

  41. Zhao G C, Cawood P A, Lu L Z. Petrology and P-T history of the Wutai amphibolites: implications for tectonic evolution of the Wutai Complex, China. Precambrian Res, 1999, 93: 181–199

    Article  Google Scholar 

  42. Zhao G C, Wilde S A, Cawood P A, et al. Petrology and P-T path of the Fuping mafic granulites: Implications for tectonic evolution of the central zone of the North China craton. J Metamorph Geol, 2000, 18: 375–391

    Article  Google Scholar 

  43. Zhao G C, Wilde S A, Cawood P A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: petrology and tectonic implications. J Petrol, 2001, 42: 1141–1170

    Article  Google Scholar 

  44. Wilde S A, Zhao G C. Archean to Paleoproterozoic evolution of the North China Craton. J Asian Earth Sci, 2005, 24: 519–522

    Article  Google Scholar 

  45. Wilde S A, Cawood P A, Wang K Y, et al. Granitoid evolution in the Neoarchaean Wutai Complex, North China Craton. J Asian Earth Sci, 2005, 24: 520–520

    Google Scholar 

  46. Tian Y Q. Geology and Mineralization of the Wutai-Hengshan Greenstone Belt. Taiyuan: Shanxi Science and Technology Press, 1991. 244

    Google Scholar 

  47. Wilde S A, Cawood P A, Wang K Y, et al. Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. In: Malps J, Fletcher C J N, Ali J R, et al., eds. Aspects of the Tectonic Evolution of China. Geol Soc Spec Publ Lond, 2004, 226: 5–26

  48. Simonetti A, Heaman L M, Chacko T, et al. In situ petrographic thin section U-Pb dating of zircon, monazite, and titanite using laser ablation-MC-ICP-MS: Inter J Mass Spectrometry, 2006, 253: 87–97

    Article  Google Scholar 

  49. Ludwig K R. Isoplot/Ex, rev. 2.49: Berkeley geochronology center. Spec Pub 1A, 2001, 56

  50. Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 2008, 452: 456–459

    Article  Google Scholar 

  51. Edwards K J, Bach W, McCollom T M. Geomicrobiology in oceanography: microbe-mineral interactions at and below subseafloor. Trends Microbiol, 2005, 13: 449–456

    Article  Google Scholar 

  52. Hellevang H. On the forcing mechanism for the H2-driven deep biosphere. Inter J Astrobiol, 2008, 7: 157–167

    Google Scholar 

  53. Lui S W, Zhao G C, Wilde S A, et al. Th-U-Pb monzanite geochronology of the Luliang and Wutai Complexes: Constraints on the Tectonothermal evolution of the Trans-North China Orogen. Precambrian Res, 2006, 148: 205–224

    Article  Google Scholar 

  54. Wang K Y, Wang Z, Yu L, et al. Evolution of Archaean greenstone belt in the Wutaishan region, North China: constraints from SHRIMP zircon U-Pb and other geochronological and isotope information. In: Cassidy K F, ed. Proceedings of the 4th International Archaean Symposium 2001. Ext Abstr, 104–105

  55. Bai J, Wang R Z, Guo J J. The Major Geologic Events of Early Precambrian and their Dating in Wutaishan Region (in Chinese). Beijing: Geological Publishing House, 1992. 1–55

    Google Scholar 

  56. Izawa M R, Bridge N J, Banerjee N R, et al. Preservation of modern and ancient microbial ichnofossils in basaltic glass by titanite mineralization. Trans Am Geophys Unior, 2008, (Suppl): 89

  57. Furnes H, Muehlenbachs K, Tumyr O, et al. Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J Geol Soc Lond, 2001, 158: 75–4

    Article  Google Scholar 

  58. Banerjee N R, Muehlenbachs K. Tuff Life: bioalteration in volcaniclastic rocks from the Ontong Java Plateau. Gechem Geophys Geosyst, 2003, 4, doi: 1029/2002GC000470

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoChun Zhao.

Additional information

We thank L. Nasdala for assistance in obtaining the Raman spectroscopy data shown in Figure 5 and N. Banerjee for insightful discussions concerning microbial bioalteration. We also thank two anonymous reviewers for their constructive comments. This work was supported by a Norwegian Research Council Project, National Natural Science Foundation of China (Grant No. 40730315) and Hong Kong RGC GRF (Grant Nos. HKU7063/06P, 7066/07P and 7057/08P).

About this article

Cite this article

McLoughlin, N., Fliegel, D.J., Furnes, H. et al. Assessing the biogenicity and syngenicity of candidate bioalteration textures in pillow lavas of the ∼2.52 Ga Wutai greenstone terrane of China. Chin. Sci. Bull. 55, 188–199 (2010). https://doi.org/10.1007/s11434-009-0448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0448-0

Keywords

Navigation