Skip to main content
Log in

Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China

Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In January 2013, a long-lasting episode of severe haze occurred in central and eastern China, and it attracted attention from all sectors of society. The process and evolution of haze pollution episodes were observed by the “Forming Mechanism and Control Strategies of Haze in China” group using an intensive aerosol and trace gases campaign that simultaneously obtained data at 11 ground-based observing sites in the CARE-China network. The characteristics and formation mechanism of haze pollution episodes were discussed. Five haze pollution episodes were identified in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) area; the two most severe episodes occurred during 9–15 January and 25–31 January. During these two haze pollution episodes, the maximum hourly PM2.5 mass concentrations in Beijing were 680 and 530 μg m−3, respectively. The process and evolution of haze pollution episodes in other major cities in the Jing-Jin-Ji area, such as Shijiazhuang and Tianjin were almost the same as those observed in Beijing. The external cause of the severe haze episodes was the unusual atmospheric circulation, the depression of strong cold air activities and the very unfavorable dispersion due to geographical and meteorological conditions. However, the internal cause was the quick secondary transformation of primary gaseous pollutants to secondary aerosols, which contributed to the “explosive growth” and “sustained growth” of PM2.5. Particularly, the abnormally high amount of nitric oxide (NO x ) in the haze episodes, produced by fossil fuel combustion and vehicle emissions, played a direct or indirect role in the quick secondary transformation of coal-burning sulphur dioxide (SO2) to sulphate aerosols. Furthermore, gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of fine particles, which can change the particle’s size and chemical composition. Consequently, the proportion of secondary inorganic ions, such as sulphate and nitrate, gradually increased, which enhances particle hygroscopicity and thereby accelerating formation of the haze pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Arimoto R, Duce R A, Savoie D L, et al. 1996. Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J Geophys Res, 101: 2011–2023

    Article  Google Scholar 

  • Canagaratna M R, Jayne J T, Jimenez J L, et al. 2007. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev, 26: 185–222

    Article  Google Scholar 

  • Chan C K, Yao X H. 2008. Air pollution in mega cities in China. Atmos Environ, 42: 1–42

    Article  Google Scholar 

  • Chang D, Song Y, Liu B. 2009. Visibility trends in six megacities in China 1973–2007. Atmos Res, 94: 161–167

    Article  Google Scholar 

  • Charron A, Harrison R M. 2003. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos Environ, 37: 4109–4119

    Article  Google Scholar 

  • Che H Z, Zhang X Y, Li Y, et al. 2009. Haze trends over the capital cities of 31 provinces in China, 1981–2005. Theor Appl Climatol, 97: 235–242

    Article  Google Scholar 

  • China National Environmental Monitoring Center. 2006. Automated Methods for Ambient Air Quality Monitoring. http://www.cnemc.cn/resource/crm/newImages/7b22f778-964f-4be6-99de-41be74c7900f.pdf

    Google Scholar 

  • Clegg S L, Brimblecombe P, Wexler A S. 1998. A thermodynamic model of the system H+-NH4 +-SO4 2−-NO3 -H2O at tropospheric temperatures. J Phys Chem, 102: 2137–2154

    Article  Google Scholar 

  • DeCarlo P F, Kimmel J R, Trimborn A, et al. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal Chem, 78: 8281–8289

    Article  Google Scholar 

  • Department of Energy Statistics, National Bureau of Statistics of China. 2001. China Energy Statistical Yearbook 2001. Beijing: China Statistics Press

    Google Scholar 

  • Department of Energy Statistics, National Bureau of Statistics of China. 2011. China Energy Statistical Yearbook 2011. Beijing: China Statistics Press

    Google Scholar 

  • Ding J, Zhu T. 2003. Heterogeneous reactions on the surface of fine particles in the atmosphere. Chin Sci Bull, 48: 2267–2276

    Article  Google Scholar 

  • Huang Y M, Liu Z R, Chen H, et al. 2013. Characteristics of mass size distributions of water-soluble inorganic ions during summer and winter haze days of Beijing (in Chinese). Environ Sci, 34: 1236–1244

    Google Scholar 

  • Liu C, Ma Q, Liu Y, et al. 2012. Synergistic reaction between SO2 and NO2 on mineral oxides: A potential formation pathway of sulfate aerosol. Phys Chem Chem Phys, 14: 1668–1676

    Article  Google Scholar 

  • Liu S, Hu M, Slanina S, et al. 2008. Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China. Atmos Environ, 42: 6284–6295

    Article  Google Scholar 

  • Ma Q X, Liu Y C, He H. 2008. Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-alumina. J Phys Chem A, 112: 6630–6635

    Article  Google Scholar 

  • Martins C R, Alves J J, Carvalho W B, et al. 2008. Influence of NO2 and metal ions on oxidation of aqueous-phase S(IV) in atmospheric concentrations. An Acad Bras Cienc, 80: 279–290

    Article  Google Scholar 

  • Parrish D D, Zhu T. 2009. Clean air for megacities. Science, 326: 674–675

    Article  Google Scholar 

  • Patashnick H, Rupprecht E. 1991. Continuous PM10 measurements using the tapered element oscillating microbalance. J Air Waste Manage Assoc, 41: 1079–1083

    Article  Google Scholar 

  • Seinfeld J H, Pandis S N. 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. New York: Wiley, John & Sons, Incorporated. 1203

    Google Scholar 

  • Shen X, Lee T, Guo J, et al. 2012. Aqueous phase sulfate production in clouds in eastern China. Atmos Environ, 62: 502–511

    Article  Google Scholar 

  • Sullivan R, Guazzotti S, Sodeman D, et al. 2007. Direct observations of the atmospheric processing of Asian mineral dust. Atmos Chem Phys, 7: 1213–1236

    Article  Google Scholar 

  • Usher C R, Michel A E, Grassian V H. 2003. Reactions on mineral dust. Chem Rev, 103: 4883–4940

    Article  Google Scholar 

  • Wang Y, Zhuang G S, Tang A H, et al. 2005. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos Environ, 39: 3771–3784

    Google Scholar 

  • Warneck P. 1999. The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Phys Chem Chem Phys, 1: 5471–5483

    Article  Google Scholar 

  • Xin J Y, Wang Y S, Wang L L, et al. 2012. Reductions of PM2:5 in Beijing-Tianjin-Hebei urban agglomerations during the 2008 Olympic Games. Adv Atmos Sci, 29: 1330–1342

    Article  Google Scholar 

  • Zhang X, Gong S, Shen Z, et al. 2003. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia 1. Network observations. J Geophys Res, 108: 8032–8039

    Google Scholar 

  • Zhang Y H, Hu M, Zhong L J, et al. 2008. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview. Atmos Environ, 42: 6157–6173

    Article  Google Scholar 

  • Zhu T, Shang J, Zhao D F. 2010. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Sci China Chem, 40: 1731–1740

    Google Scholar 

  • Zhu T. 2005. Air Pollution Complex at Urban and Regional Scales, Progress in Environmental Chemistry (in Chinese). Beijing: Chemical Industry Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YueSi Wang or ZiRui Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yao, L., Wang, L. et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 57, 14–25 (2014). https://doi.org/10.1007/s11430-013-4773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4773-4

Keywords

Navigation