Skip to main content
Log in

Issues in the Reconstruction of Gene Order Evolution

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

As genomes evolve over hundreds of millions years, the chromosomes become rearranged, with segments of some chromosomes inverted, while other chromosomes reciprocally exchange chunks from their ends. These rearrangements lead to the scrambling of the elements of one genome with respect to another descended from a common ancestor. Multidisciplinary work undertakes to mathematically model these processes and to develop statistical analyses and mathematical algorithms to understand the scrambling in the chromosomes of two or more related genomes. A major focus is the reconstruction of the gene order of the ancestral genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venter J C, Adams M D, Myers E W, Li PW, Mural R J, Sutton G G et al. The sequence of the human genome. Science, 2001, 291(5507): 1304-1351.

    Article  Google Scholar 

  2. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420(6915): 520-562.

    Article  Google Scholar 

  3. Sankoff D, Leduc G, Antoine N, Paquin B, Lang B F, Cedergren R. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. the National Academy of Sciences USA, 1992, 89(14): 6575-6579.

    Article  Google Scholar 

  4. Sankoff D. Edit distance for genome comparison based on nonlocal operations. In Proc. the Third Annual Symposium on Combinatorial Pattern Matching (CPM1992), Tucson, USA, April 29-May 1, 1992, pp.121-135.

  5. Cosner M E, Jansen R K, Moret B M E, Raubeson L A, Wang L-S, Warnow T, Wyman S. An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae. Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, Sankoff D, Nadeau J (eds.), Dordrecht: Kluwer Academic Publishers, 2000, pp.99-121.

  6. Ajana Y, Lefebvre J-F, Tillier E R M, El-Mabrouk N. Exploring the set of all minimal sequences of reversals — An application to test the replication-directed reversal hypothesis. In Proc. the Second International Workshop on Algorithms in Bioinformatics (WABI 2002), Rome, Italy, Sept. 17-21, 2002, pp.300-315.

  7. Hannenhalli S, Pevzner P A. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM, 1999, 46(1): 1-27.

    Article  MATH  MathSciNet  Google Scholar 

  8. Caprara A. Sorting permutations by reversals and Eulerian cycle decompositions. SIAM Journal on Discrete Mathematics, 1999, 12(1): 91-110.

    Article  MATH  MathSciNet  Google Scholar 

  9. Watterson G A, Ewens W J, Hall T E, Morgan A. The chromosome inversion problem. Journal of Theoretical Biology, 1982, 99(1): 1-7.

    Article  Google Scholar 

  10. Sankoff D. Mechanisms of genome evolution: Models and inference. Bulletin of the International Statistical Institute, 1989, 47(3): 461-475.

    MathSciNet  Google Scholar 

  11. Sturtevant A H, Novitski E. The homologies of the chromosome elements in the genus Drosophila. Genetics, 1941, 26(5): 517-541.

    Google Scholar 

  12. Hannenhalli S, Pevzner P A. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proc. the Thirty-Sixth Annual Symposium on Foundations of Computer Science (FOCS 1995), Milwaukee, USA, Oct. 23-25, 1995, pp.581-592.

  13. Tesler G. Efficient algorithms for multichromosomal genome rearrangements. Journal of Computer and System Sciences, 2002, 65(3): 587-609.

    Article  MATH  MathSciNet  Google Scholar 

  14. Sankoff D, Blanchette M. Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology, 1998, 5(3): 555-570.

    Article  Google Scholar 

  15. El-Mabrouk N, Bryant D, Sankoff D. Reconstructing the pre-doubling genome. In Proc. the Third Annual International Conference on Computational Molecular Biology (RECOMB), Lyon, France, April 11-14, 1999, pp.154-163.

  16. El-Mabrouk N, Sankoff D. The reconstruction of doubled genomes. SIAM Journal on Computing, 2003, 32(2): 754-792.

    Article  MATH  MathSciNet  Google Scholar 

  17. Pevzner P, Tesler G. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of Sciences USA, 2003, 100(13): 7672-7677.

    Article  Google Scholar 

  18. Kent W J, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences USA, 2003, 100(20): 11484-11489.

    Article  Google Scholar 

  19. Kent W J, Sugnet C W, Furey T S, Roskin K M, Pringle T H, Zahler A M, Haussler A D. The Human genome browser at UCSC. Genome Research, 2002, 12(6): 996-1006.

    Google Scholar 

  20. Mazowita M, Haque L, Sankoff D. Stability of rearrangement measures in the comparison of genome sequences. Journal of Computational Biology, 2006, 13(2): 554-566.

    Article  MathSciNet  Google Scholar 

  21. Sinha A U, Meller J. Sensitivity analysis for reversal distance and breakpoint reuse in genome rearrangements. Pacific Symposium on Biocomputing, 2008, 13: 37-38.

    Google Scholar 

  22. Jiang T. Some algorithmic challenges in genome-wide ortholog assignment. J. Comput. Sci. & Technol., 2010, 25(1): 42-52.

    Article  Google Scholar 

  23. Tannier E, Zheng C, Sankoff D. Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics, 2009, 10: 120.

    Article  Google Scholar 

  24. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of Genome Rearrangements. Cambridge, Massachusetts: The MIT Press, 2009.

    MATH  Google Scholar 

  25. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics, 2005, 21(16): 3340-3346,

    Article  Google Scholar 

  26. Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrangements. In Proc. the Sixth International Workshop on Algorithms in Bioinformatics (WABI 2000), Zurich, Switzerland, Sept. 11-13, 2006, pp.163-173.

  27. Dalevi D, Eriksen N. Expected gene-order distances and model selection in bacteria. Bioinformatics, 2008, 24(11): 1332-1338.

    Article  Google Scholar 

  28. Eriksen N, Hultman A. Estimating the expected reversal distance after a fixed number of reversals. Advances in Applied Mathematics, 2004, 32(3): 439-453.

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang L-S, Warnow T. Distance-Based Genome Rearrangement Phylogeny. J. Mol. Wvol., 2006, 63(4): 473-483

    Article  Google Scholar 

  30. Muñoz A, Sankoff D. Rearrangement phylogeny of genomes in contig form. In Proc. the Fifth International Symposium on Bioinformatics Research and Applications (ISBRA2009), Fort Lauderdale, USA, May 13-16, 2009, pp.160-172.

  31. Adam Z, Turmel M, Lemieux C, Sankoff D. Common intervals and symmetric difference in a model-free phylogenomics, with an application to streptophyte evolution. Journal of Computational Biology, 2007, 14(4): 436-445.

    Article  MathSciNet  Google Scholar 

  32. Zhu Q, Adam Z, Choi V, Sankoff D. Generalized gene adjacencies, graph bandwidth, and clusters in yeast evolution. Transactions on Computational Biology and Bioinformatics, 2009, 6(2): 213-220.

    Article  Google Scholar 

  33. Tannier E. Yeast ancestral genome reconstructions: The possibilities of computational methods. In Proc. the 7th Ann. RECOMB Satellite Workshop on Comparative Genomics (RECOMB CG2009), Budapest, Hungary, Sept. 27-29, 2009, pp.1-12.

  34. Sankoff D, Blanchette M. The median problem for breakpoints in comparative genomics. In Proc. the Third Annual International Conference on Computing and Combinatorics (COCOON1997), Shanghai, China, Aug. 20-22, 1997, pp.251-263.

  35. Bader D, Moret B M. GRAPPA runs in record time. HPCwire. November 23, 2000, 9(47).

  36. Siepel A C. Exact algorithms for the reversal median problem [Master’s Thesis]. University of New Mexico, 2001.

  37. Caprara A. On the practical solution of the reversal median problem. In Proc. the First International Workshop on Algorithms in Bioinformatics (WABI 2001), Aarhus, Denmark, Aug. 28-31, 2001, pp.238-251.

  38. Bourque G, Pevzner P A. Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Research, 2002, 12(1): 26-36.

    Google Scholar 

  39. Xu A W. A fast and exact algorithm for the median of three problem — A graph decomposition approach. In Proc. Sixth Annual RECOMB Satellite Workshop Comparative Genomics (RECOMB CG2008), Paris, France, Oct. 13-15, 2008, pp.184-197.

  40. Xu A W, Sankoff D. Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In Proc. the Eighth International Workshop on Algorithms in Bioinformatics (WABI 2008), Karlsruhe, Germany, Sept. 15-17, 2008, pp.25-37.

  41. Adam Z, Sankoff D. A statistically fair comparison of ancestral genome reconstructions, based on breakpoint and rearrangement distances. In Proc. the Seventh Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB CG2009), Budapest, Hungary, Sept. 16-18, 2009, pp.193-204.

  42. Adam Z, Sankoff D. The ABCs of MGR with DCJ. Evolutionary Bioinformatics Online, 2008, 4: 69-74.

    Google Scholar 

  43. Warren R, Sankoff D. Genome halving with double cut and join. Journal of Bioinformatics and Computational Biology, 2009, 7(2): 357-371.

    Article  Google Scholar 

  44. Mixtacki J. Genome halving under DCJ revisited. In Proc. the Fourteenth Annual Conference on Computing and Combinatorics (COCOON), Dalian, China, June 27-29, 2008, pp.276-286.

  45. Blin G, Chauve C, Fertin G, Rizzi R, Vialette S. Comparing genomes with duplications: A computational complexity point of view. Transactions on Computational Biology and Bioinformatics, 2007, 4(4): 523-534.

    Article  Google Scholar 

  46. Zheng C, Zhu Q, Sankoff D. Genome halving with an outgroup. Evolutionary Bioinformatics, 2006, 2(13): 319-326.

    Google Scholar 

  47. Sankoff D, Zheng C, Zhu Q. Polyploids, genome halving and phylogeny. Bioinformatics, 2007, 23(13): i433-i439.

    Article  Google Scholar 

  48. Zheng C, Zhu Q, Adam Z, Sankoff D. Guided genome halving: Hardness, heuristics and the history of the Hemiascomycetes. Bioinformatics, 2008, 24(13): i96-i104.

    Article  Google Scholar 

  49. Sankoff D, Zheng C, Wall P K, dePamphilis C, Leebens-Mack J, Albert V A. Towards improved reconstruction of ancestral gene order in angiosperm phylogeny. Journal of Computational Biology, 2009, 16(10): 1353-1367.

    Article  MathSciNet  Google Scholar 

  50. Warren R, Sankoff D. Genome aliquoting with double cut and join. BMC Bioinformatics, 2009, 10: S2.

    Article  Google Scholar 

  51. Zheng C, Lenert A, Sankoff D. Reversal distance for partially ordered genomes. Bioinformatics, 2005, 21(Suppl. 1): i502-i508.

    Article  Google Scholar 

  52. Zheng C, Sankoff D. Genome rearrangements with partially ordered chromosomes. Journal of Combinatorial Optimization, 2006, 11(2): 133-144.

    Article  MATH  MathSciNet  Google Scholar 

  53. Blin G, Blais E, Hermelin D, Guillon P, Blanchette M, El-Mabrouk N. Gene maps linearization using genomic rearrangement distances. Journal of Computational Biology, 2007, 14(4): 394-407.

    Article  MathSciNet  Google Scholar 

  54. Chen X, Cui Y. An approximation algorithm for the minimum breakpoint linearization problem. Transactions on Computational Biology and Bioinformatics, 2009, 6(3): 401-409.

    Article  MathSciNet  Google Scholar 

  55. Gaul E, Blanchette M. Ordering partially assembled genomes using gene arrangements. In Proc. the Fourth Annual Workshop on Comparative Genomics (RECOMB CG2006), Montreal, Canada, Sept. 24-26, 2006, pp.113-128.

  56. Bhutkar A, Russo S, Smith T F, Gelbart W M. Techniques for multi-genome synteny analysis to overcome assembly limitations. Genome Informatics, 2006, 17(2): 152-161.

    Google Scholar 

  57. Zheng C, Zhu Q, Sankoff D. Removing noise and ambiguities from comparative maps in rearrangement analysis. Transactions on Computational Biology and Bioinformatics, 2007, 4(4): 515-522.

    Article  Google Scholar 

  58. Choi V, Zheng C, Zhu Q, Sankoff D. Algorithms for the extraction of synteny blocks from comparative maps. In Proc. the Seventh International Workshop on Algorithms in Bioinformatics (WABI 2007), Philadelphia, USA, Sept. 8-9, 2007, pp.277-288.

  59. Ostergard P R J. A new algorithm for the maximum-weight clique problem. Nordic Journal of Computing, 2001, 8(4): 424-436.

    MathSciNet  Google Scholar 

  60. Kumlander D. A new exact algorithm for the maximumweight clique problem based on a heuristic vertex-coloring and a backtrack search. In The Fourth European Congress of Mathematics, Stockholm, Sweden, June 27-July 2, 2004, MS. and Poster.

  61. Bulteau L, Fertin G, Rusu I. Maximal strip recovery problem with gaps: Hardness and approximation algorithms. In Proc. the 20th Int. Symp. Algorithms and Computation (ISAAC 2009), Hawaii, USA, Dec. 16-18, 2009, pp.710-719.

  62. Chen Z, Fu B, Jiang M, Zhu B. On recovering syntenic blocks from comparative maps. In Proc. the Second Annual Int. Conf. Combinatorial Optimization and Applications (COCOA2008). St. John’s, Canada, Aug. 21-24, 2008, pp.319-327.

  63. Jiang M. Inapproximability of maximal strip recovery. In Proc. the 20th Int. Symp. Algorithms and Computation (ISAAC 2009), Hawaii, USA, Dec. 16-18, 2009, pp.616-625.

  64. Wang L, Zhu B. On the tractability of maximal strip recovery. In Proc. the Sixth Annual Conf. Theory and Applications of Models of Computation (TAMC2009), Changsha, China, May 18-22, 2009, pp.400-409.

  65. Hoberman R, Durand D. The incompatible desiderata of gene cluster properties. In Proc. the Fifth Annual Workshop on Comparative Genomics (RECOMB CG2005), Dublin, Ireland, Sept. 18-20, 2005, pp.73-87.

  66. Sankoff D, Haque L. Power boosts for cluster tests. In Proc. the Fifth Annual Workshop on Comparative Genomics (RECOMB CG), Dublin, Ireland, Sept. 18-20, 2005. pp.121-130.

  67. Xu X, Sankoff D. Tests for gene clusters satisfying the generalized adjacency criterion. In Proc. the Third Brazilian Symposium on Bioinformatics, Advances in Bioinformatics and Computational Biology (BSB 2008), Santo Andre, Brazil, Aug. 28-30, 2008, pp.152-160.

  68. Yang Z, Sankoff D. Natural parameter values for generalized gene adjacency. In Proc. the Seventh Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB CG), San Diego, USA, Sept. 16-18, 2009, pp.13-23.

  69. Hoberman R, Sankoff D, Durand D. The statistical analysis of spatially clustered genes under the maximum gap criterion. Journal of Computational Biology, 2005, 12(8): 1083-1102.

    Article  Google Scholar 

  70. Erdös P, Rényi A. On random graphs. Publicationes Mathematicae, 1959, 6: 290-297.

    MATH  Google Scholar 

  71. Erdös P, Rényi A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5: 17-61.

    MATH  Google Scholar 

  72. Erdös P, Rényi A. On the strength of connectedness of a random graph. Acta Mathematica Scientia Hungary, 1961, 12: 261-267.

    Article  MATH  Google Scholar 

  73. D’Souza R, Achlioptas D, Spencer J. Explosive percolation in random networks. Science, 2009, 323(5920): 1453-1455.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sankoff.

Additional information

This work was supported in part by grants and fellowships from the Natural Science and Engineering Council of Canada (NSERC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankoff, D., Zheng, C., Muñoz, A. et al. Issues in the Reconstruction of Gene Order Evolution. J. Comput. Sci. Technol. 25, 10–25 (2010). https://doi.org/10.1007/s11390-010-9301-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9301-9

Keywords

Navigation