Skip to main content
Log in

Discrimination of steatosis and NASH in mice using nuclear magnetic resonance spectroscopy

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a common cause of hepatic dysfunction. The disease spectrum ranges from hepatic steatosis to nonalcoholic steatohepatitis (NASH). The aim of this study was to identify metabolic differences in murine models of simple hepatic steatosis and NASH for the distinction of these NAFLD stages. For 12 weeks, male BALB/c mice were fed either a control or two different high-fat diets leading to hepatic steatosis and NASH, respectively. Metabolic differences were determined by independent component analysis (ICA) of nuclear magnetic resonance (NMR) spectra of lipophilic and hydrophilic liver extracts, and urine specimens. The results from ICA clearly discriminated the three investigated groups. Discriminatory biomarkers in the lipophilic liver extracts were free cholesterol, cholesterol ester and lipid methylene. Discrimination of the hydrophilic liver extracts was mainly mediated by betaine, glucose, and lactate, whereas in urine taurine, trimethylamine-N-oxide, and trimethylamine were the most discriminatory biomarkers. In conclusion, NMR metabolite fingerprinting of spot urine specimens may allow the noninvasive distinction of steatosis and NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelmalek, M. F., Sanderson, S. O., Angulo, P., et al. (2009). Betaine for nonalcoholic fatty liver disease: results of a randomized placebo-controlled trial. Hepatology, 50, 1818–1826.

    Article  PubMed  CAS  Google Scholar 

  • Adams, L. A., & Lindor, K. D. (2007). Nonalcoholic fatty liver disease. Annals of Epidemiology, 17, 863–869.

    Article  PubMed  Google Scholar 

  • Backus, R. C., Rogers, Q. R., & Morris, J. G. (1994). Microbial degradation of taurine in fecal cultures from cats given commercial and purified diets. Journal of Nutrition, 124, 2540S–2545S.

    PubMed  CAS  Google Scholar 

  • Brunt, E. M. (2010). Pathology of nonalcoholic fatty liver disease. Nature Reviews Gastroenterology & Hepatology, 7, 195–203.

    Article  Google Scholar 

  • Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non Gaussian signals. IEE Proceedings-F, 140, 362–370.

    Google Scholar 

  • Chen, S.-W., Chen, Y.-X., Shi, J., Lin, Y., & Xie, W.-F. (2006). The restorative effect of taurine on experimental nonalcoholic steatohepatitis. Digestive Diseases and Sciences, 51, 2225–2234.

    Article  PubMed  CAS  Google Scholar 

  • Cobbold, J. F. L., Anstee, Q. M., Goldin, R. D., et al. (2009). Phenotyping murine models of non-alcoholic fatty liver disease through metabolic profiling of intact liver tissue. Clinical Science (London), 116, 403–413.

    Article  CAS  Google Scholar 

  • Cobbold, J. F. L., Patel, J. H., Goldin, R. D., et al. (2010). Hepatic lipid profiling in chronic hepatitis C: an in vitro and in vivo proton magnetic resonance spectroscopy study. Journal of Hepatology, 52, 16–24.

    Article  PubMed  CAS  Google Scholar 

  • Dorn, C., Kraus, B., Motyl, M., et al. (2010a). Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Molecular Nutrition Food Research, 54(Suppl 2), S205–S213.

    Article  PubMed  CAS  Google Scholar 

  • Dorn, C., Riener, M.-O., Kirovski, G., et al. (2010b). Expression of fatty acid synthase in nonalcoholic fatty liver disease. International Journal of Clinical and Experimental Pathology, 3, 505–514.

    PubMed  CAS  Google Scholar 

  • Dubey, S. S., Palodhi, G. R., & Jain, A. K. (1987). Ascorbic acid, dehydroascorbic acid and glutathione in liver disease. Indian Journal of Physiology and Pharmacology, 31, 279–283.

    PubMed  CAS  Google Scholar 

  • Dumas, M.-E., Barton, R. H., Toye, A., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 12511–12516.

    Article  PubMed  CAS  Google Scholar 

  • Gronwald, W., Klein, M. S., Kaspar, H., et al. (2008). Urinary metabolite quantification employing 2D NMR spectroscopy. Analytical Chemistry, 80, 9288–9297.

    Article  PubMed  CAS  Google Scholar 

  • Hardison, W. G., & Proffitt, J. H. (1977). Influence of hepatic taurine concentration on bile acid conjugation with taurine. American Journal of Physiology, 232, E75–E79.

    PubMed  CAS  Google Scholar 

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13, 411–430.

    Article  PubMed  Google Scholar 

  • Jahns, G. L., Kent, M. N., Burgoon, L. D., Del Raso, N., Zacharewski, T. R., & Reo, N. V. (2009). Development of analytical methods for NMR spectra and application to a 13C toxicology study. Metabolomics, 5, 253–262.

    Article  CAS  Google Scholar 

  • Johnson, N. A., Walton, D. W., Sachinwalla, T., et al. (2008). Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology, 47, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Klein, M. S., Almstetter, M. F., Schlamberger, G., et al. (2010). Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. Journal of Dairy Science, 93, 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, H., Sakurai, S., Uemura, M., Fukui, H., Morimoto, H., & Tamagawa, Y. (2007). Mitochondrial abnormality and oxidative stress in nonalcoholic steatohepatitis. Alcoholism, Clinical and Experimental Research, 31, S61–S66.

    Article  PubMed  Google Scholar 

  • Mårtensson, J., & Meister, A. (1992). Glutathione deficiency increases hepatic ascorbic acid synthesis in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 89, 11566–11568.

    Article  PubMed  Google Scholar 

  • Obinata, K., Maruyama, T., Hayashi, M., Watanabe, T., & Nittono, H. (1996). Effect of taurine on the fatty liver of children with simple obesity. Advances in Experimental Medicine and Biology, 403, 607–613.

    PubMed  CAS  Google Scholar 

  • Puri, P., Baillie, R. A., Wiest, M. M., et al. (2007). A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology, 46, 1081–1090.

    Article  PubMed  CAS  Google Scholar 

  • Saverymuttu, S. H., Joseph, A. E., & Maxwell, J. D. (1986). Ultrasound scanning in the detection of hepatic fibrosis and steatosis. British Medical Journal (Clinical Research Ed), 292, 13–15.

    Article  CAS  Google Scholar 

  • Schnackenberg, L. K., Dragan, Y. P., Reily, M. D., Robertson, D. G., & Beger, R. D. (2007). Evaluation of NMR spectral data of urine in conjunction with measured clinical chemistry and histopathology parameters to assess the effects of liver and kidney toxicants. Metabolomics, 3, 87–100.

    Article  CAS  Google Scholar 

  • Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., & Selbig, J. (2004). Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics, 20, 2447–2454.

    Article  PubMed  CAS  Google Scholar 

  • Seoane, J., Barberà, A., Télémaque-Potts, S., Newgard, C. B., & Guinovart, J. J. (1999). Glucokinase overexpression restores glucose utilization and storage in cultured hepatocytes from male Zucker diabetic fatty rats. The Journal of Biological Chemistry, 274, 31833–31838.

    Article  PubMed  CAS  Google Scholar 

  • Serkova, N. J., Jackman, M., Brown, J. L., et al. (2006). Metabolic profiling of livers and blood from obese Zucker rats. Journal of Hepatology, 44, 956–962.

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

    Article  PubMed  Google Scholar 

  • Wang, Q., Jiang, L., Wang, J., et al. (2009). Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology, 49, 1166–1175.

    Article  PubMed  CAS  Google Scholar 

  • Waters, N. J., Holmes, E., Waterfield, C. J., Farrant, R. D., & Nicholson, J. K. (2002). NMR and pattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate. Biochemical Pharmacology, 64, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Yaman, H., CakIr, E., Ozcan, O., et al. (2005). Elevated urine neopterin levels in nonalcoholic steatohepatitis. Clinical Biochemistry, 38, 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Zeisel, S. H., da Costa, K. A., Youssef, M., & Hensey, S. (1989). Conversion of dietary choline to trimethylamine and dimethylamine in rats: dose-response relationship. Journal of Nutrition, 119, 800–804.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ann-Kathrin Immervoll for assistance in sample preparation and Daniela Herold for statistical advice.

Funding

This study was funded by BayGene and the Regensburg ReForM program. The authors who have taken part in this study declared that they do not have anything to disclose regarding funding from industry or conflict of interest with respect to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Gronwald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, M.S., Dorn, C., Saugspier, M. et al. Discrimination of steatosis and NASH in mice using nuclear magnetic resonance spectroscopy. Metabolomics 7, 237–246 (2011). https://doi.org/10.1007/s11306-010-0243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0243-6

Keywords

Navigation