Skip to main content
Log in

Towards Unique and Anchor-Free Localization for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Despite a large number of approaches developed for wireless sensor network (WSN) localization, there are still many unsolved problems in this area. The challenges to be addressed are both in analyzing characteristics of the localizable WSNs and designing efficient localization algorithms under a variety of conditions. In this paper we first draw on powerful results from graph rigidity theory and combinatorial theory, revealing that the combination of distance constraint and bearing constraint leads to necessary and sufficient condition for unique localization. This enlightens our proposing an anchor-free and computationally simple ad hoc localization algorithm for WSNs. A novel combination of distance and direction estimation technique is introduced to detect and estimate ranges between neighbors. Using this information we construct unidirectional local coordinate systems to avoid the reflection ambiguity. Such local maps then converge to form a global network wide coordinate system using a transformation matrix [T], which finally leads to node absolute positions. Simulation results have shown that our algorithm achieves high accuracy without using any error refining schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyildiz I. F., Su W., Sankarasubramaniam Y., & Cayirci E. (2002) Wireless sensor networks: a survey. Computer Networks 38(4): 393–422

    Article  Google Scholar 

  2. Priyantha, N. B., Miu, A. K. L., Balakrishnan, H., & Teller, S. (2001). The cricket compass for context-aware mobile applications. Proceedings Annual ACM International Conference on Mobile Computing and Networking, 1–14.

  3. Guvenc, I., Gezici, S., & Sahinoglu, Z. (2008). Ultra-wideband range estimation: theoretical limits and practical algorithms. Proceedings of the IEEE International Conference on Ultra-Wideband, 93–96.

  4. Godara L. C. (1997) Application of antenna arrays to mobile communications. II. beam-forming and direction-of-arrival considerations. Proceedings of the IEEE 85(8): 1195–1245

    Article  Google Scholar 

  5. Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. Proceedings of the IEEE International Conference on Computer Communications, 3, 1734–1743.

  6. Shih K. P., Wang S. S. (2007) Distributed direction-based localization in wireless sensor networks. Computer Communications 30(6): 1424–1439

    Article  Google Scholar 

  7. Stefano G. D., Petricola A. (2008) A distributed AOA based localization algorithm for wireless sensor networks. Journal of Computers 3(4): 1–8

    Article  MATH  Google Scholar 

  8. Savvides, A., Han, C. C., & Srivastava, M. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. Proceedings of the IEEE/ACM Annual Conference on Mobile Computing and Networks 166–179.

  9. Capkun S., Hamdi M., Hubaux J. (2002) GPS-free positioning in mobile ad-hoc networks. Cluster Computing 5: 157–167

    Article  Google Scholar 

  10. Iyengar, R., & Sikdar, B. (2003). Scalable and distributed GPS free positioning for sensor networks. Proceedings of the IEEE International Conference on Communications, 1, 338–342.

  11. Cheng, X., Thaeler, A., Xue, G., & Chen, D. (2004). TPS: a time-based positioning scheme for outdoor sensor networks. Proceedings of the IEEE International Conference on Computer Communications, 4, 2685–2696.

  12. Moore, D., Leonard, J., Rus, D., & Teller, S. (2004). Robust distributed network localization with noisy range measurements. Proceedings of the ACM Conference on Embedded Networked Sensor Systems, 50–61.

  13. Youssef, A., & Agrawala, A. (2005). Accurate anchor-free node localization in wireless sensor networks. Proceedings of the IEEE International Performance Computing and Communications Conference, 465–470.

  14. Wen, C. Y., & Hsiao, Y. C. (2008). Decentralized anchor-free localization for wireless ad-hoc sensor networks. Proceedings of the IEEE International Conference on System, Man, and Cybernetic, 2776–2784.

  15. Boushaba M., Hafid A., Benslimane A. (2009) High accuracy localization method using AoA in sensor networks. Computer Networks 53(18): 3076–3088

    Article  MATH  Google Scholar 

  16. Mao G., Fidan B., Anderson B. D. O. (2007) Wireless sensor network localization techniques. Computer Networks 51(10): 2529–2553

    Article  MATH  Google Scholar 

  17. Bal, M., Liu, M., Shen, W., & Ghenniwa, H. (2009). Localization in cooperative wireless sensor networks: a review. Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design, 438–443.

  18. Aspnes J., Eren T., Goldenberg D. K., Morse A. S., Whiteley W., Yang Y. R. et al (2006) A theory of network localization. IEEE Transactions on Mobile Computing 5(12): 1663–1678

    Article  Google Scholar 

  19. Connelly R. (2005) Generic global rigidity. Discrete & Computational Geometry 33(4): 549–563

    Article  MathSciNet  MATH  Google Scholar 

  20. Roth B. (1981) Rigid and flexible frameworks. American Mathematical Monthly 88(1): 6–21

    Article  MathSciNet  MATH  Google Scholar 

  21. Jackson B., Jordán T. (2010) Globally rigid circuits of the direction-length rigidity matroid. Journal of Combinatorial Theory, Series B 100(1): 1–22

    Article  MathSciNet  MATH  Google Scholar 

  22. Even S., Tarjan R. E. (1975) Network flow and testing graph connectivity. SIAM Journal on Computing 4: 507–518

    Article  MathSciNet  MATH  Google Scholar 

  23. Esfahanian A. H., Hakimi S. L. (1984) On computing the connectivities of graphs and digraphs. Networks 14: 355–366

    Article  MathSciNet  MATH  Google Scholar 

  24. Henzinger, M. R., Rao, S., & Gabow, H. N. (1996). Computing vertex connectivity: new bounds from old techniques. Proceedings of the IEEE Annual Symposium on Foundations of Computer Science, 462–471.

  25. Kannan, A. A., Fidan, B., & Mao, G. (2008). Robust distributed sensor network localization based on analysis of flip ambiguities. Proceedings of the IEEE Global Telecommunications Conference, 1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chen, Y. & Liu, Y. Towards Unique and Anchor-Free Localization for Wireless Sensor Networks. Wireless Pers Commun 63, 261–278 (2012). https://doi.org/10.1007/s11277-011-0337-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0337-0

Keywords

Navigation