Skip to main content

Advertisement

Log in

Mercury pollution: an emerging problem and potential bacterial remediation strategies

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heavy metal toxicity represents an uncommon but clinically significant medical condition, which if unrecognized or inappropriately treated results in significant morbidity and mortality. Mercury is recognized as a potent and widely distributed toxicant in the global environment having ability to accumulate at various levels of food chain besides possessing ability to cross placental and blood–brain barrier. It has been seen that bacteria growing near mercury polluted sites have evolved various means of resistance based on the expression of different genes of mer operon against different forms of mercury. Microbe based remediation/detoxification of mercury is on forefront due to low cost and less health hazardous compared to physicochemical based strategies, which are cost intensive and hazardous to human health. However, strategies based on the modern aspects of biological technologies employing mer operon genes in different combination are needed to be designed for exploitation in the remediation of mercury completely from mercury contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110(5):689–694

    CAS  Google Scholar 

  • Barkay T, Susan MM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384. doi:10.1016/S0168-6445(03)00046-9

    Article  CAS  Google Scholar 

  • Benison GC, Lello PD, Shokes JE, Cosper NJ, Scott RA, Legault P, Omichinski JG (2004) A stable mercury containing complex of the organomercurial lyase Mer B: catalysis, product release and direct transfer to Mer A. Biochemistry 43:8333–8345. doi:10.1021/bi049662h

    Article  CAS  Google Scholar 

  • Berntssen MH, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions and altered behavior in Atlantic salmon (Salmo Salar) parr. Aquat Toxicol 65:55–72. doi:10.1016/S0166-445X(03)00104-8

    Article  CAS  Google Scholar 

  • Brown NL, Misra TK, Winnie JN, Schmidt A, Seiff M, Silver S (1986) Nucleotide sequence of mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of mercuric ion detoxification system. Mol Gen Genet 202(1):143–151. doi:10.1007/BF00330531

    Article  CAS  Google Scholar 

  • Brunke M, Deckwer WD, Frischmuth A, Horn JM, Lunsdorf H, Rhode M, Rohricht M, Timmis KN, Weppen P (1993) Microbial retention of mercury from waste streams in a laboratory column containing mer A gene of bacteria. FEMS Microbiol Rev 11:145–152. doi:10.1111/j.1574-6976.1993.tb00278.x

    Article  CAS  Google Scholar 

  • Canstein VH, Li Y, Timmis KN, Deckwer WD, Wagner ID (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury resistant Pseudomonas putida strain. Appl Environ Microbiol 65:5279–5284

    Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) Toxicology of mercury; current exposure and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  Google Scholar 

  • Eto K, Takizawa Y, Akagi H, Haraguchi K, Asano S, Takahata N, Tokunaga H (1999) Differential diagnosis between organic and inorganic mercury poisoning in human cases–pathologic point of view. Toxicol Pathol 27:664–671. doi:10.1177/019262339902700608

    Article  CAS  Google Scholar 

  • Gallagher PK, Mitchell J, Wheal HV (1982) Identity and ultrastructural effects of mercuric chloride and methylmercury after intracerebral injection. Toxicology 23:261–266. doi:10.1016/0300-483X(82)90103-2

    Article  CAS  Google Scholar 

  • Griffin HG, Foster TJ, Silver S, Misra TK (1987) Cloning and DNA sequence of mercuric and organomercurial resistance determinants of plasmid pDU1358. Proc Natl Acad Sci USA 84:3112–3116. doi:10.1073/pnas.84.10.3112

    Article  CAS  Google Scholar 

  • Gupta N, Ali A (2004) Mercury volatilization by R factor systems in Escherichia coli isolated from aquatic environments of India. Curr Microbiol 48:88–96. doi:10.1007/s00284-003-4054-0

    Article  CAS  Google Scholar 

  • Hajela N, Murtaza I, Qamri Z, Ali A (2002) Molecular intervention in the abatement of mercury pollution. Environmental education, Anmol Publication Pvt. Ltd, New Delhi, pp 122–144

    Google Scholar 

  • Hobman J, Kholodi G, Nikiforov V, Ritchie DA, Strike P, Yurieva O (1994) Sequence of mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene 277:73–78. doi:10.1016/0378-1119(94)90835-4

    Article  Google Scholar 

  • Horn JM, Brunke M, Deckwer WD, Timmis KN (1994) Pseudomonas putida strains which constitutively overexpress mercury resistance for biodetoxification of organomercurial pollutants. Appl Environ Microbiol 60(1):357–362

    CAS  Google Scholar 

  • Inoue C, Sugawara K, Kusano T, Kitagawa Y (1989) Nucleotide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric reductase. Gene 84:47–54. doi:10.1016/0378-1119(89)90138-8

    Article  CAS  Google Scholar 

  • Inoue C, Sugawara K, Kusano T (1991) mer R regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol Microbiol 5:2707–2718. doi:10.1111/j.1365-2958.1991.tb01979.x

    Article  CAS  Google Scholar 

  • Kerper LE, Mokrzan EM, Clarkson TW, Ballatori N (1996) Methylmercury efflux from brain capillary endothelial cells is modulated by intracellular glutathione but not ATP. Toxicol Appl Pharmacol 141:526–531. doi:10.1006/taap.1996.0318

    Article  CAS  Google Scholar 

  • Kholodi GY, Yurieva OV, Lomovskaya OL, Gorlenko ZM, Mindlin SZ, Nikiforov VG (1993) Tn5053, a mercury resistance transposon with integron ends. J Mol Biol 230:1103–1107. doi:10.1006/jmbi.1993.1228

    Article  Google Scholar 

  • Kiyano M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52(3):199–204. doi:10.1248/jhs.52.199

    Article  Google Scholar 

  • Kiyono M, Pan-Hou H (1999) mer G gene product is involved in phenyl mercury resistance in Pseudomonas strain K-62. J Bacteriol 181:726–730

    CAS  Google Scholar 

  • Kiyono M, Sone Y, Nakamura R, Pan-Hou H, Sakabe K (2009) The Mer E protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett 583:1127–1131. doi:10.1016/j.febslet.2009.02.039

    Article  CAS  Google Scholar 

  • Kusano T, Ji G, Inoue C, Silver S (1990) Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans mer C gene cloned in E. coli. J Bacteriol 172(5):2688–2692

    CAS  Google Scholar 

  • Langford NJ, Ferner RE (1993) Toxicity of mercury. J Hum Hypertens 13:651–656. doi:10.1038/sj.jhh.1000896

    Article  CAS  Google Scholar 

  • Leong CC, Syed NI, Lorscheider FL (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. NeuroReport 12(4):733–737. doi:10.1097/00001756-200103260-00024

    Article  CAS  Google Scholar 

  • Liebert CA, Wireman J, Smith T, Summers AO (1997) Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63:1066–1076

    CAS  Google Scholar 

  • Lund PA, Brown NL (1989) Regulation of transcription in Escherichia coli from mer promoters in the transposon Tn501. J Mol Biol 205:343–353. doi:10.1016/0022-2836(89)90345-8

    Article  CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1995) Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut 80:915–921. doi:10.1007/BF01189744

    Article  CAS  Google Scholar 

  • Miller SM, Massey V, Williams CH, Ballou DP, Walsh CT (1991) Communication between active sites in dimeric mercuric ion reductase—an alternating site hypothesis for catalysis. Biochemistry 30:2600–2612. doi:10.1021/bi00224a006

    Article  CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 25:4–16. doi:10.1016/0147-619X(92)90002-R

    Article  Google Scholar 

  • Mokrzan EM, Kerper LE, Ballatori N, Clarkson TW (1995) Methylmercury thiol uptake into cultured brain capillary endothelial cells on amino acid system. J Pharmacol Exp Ther 272:1277–1284

    CAS  Google Scholar 

  • Moore MJ, Walsh CT (1989) Mutagenesis of the N-terminal and C-terminal cysteine pairs of Tn501 mercuric ion reductase; consequences for bacterial detoxification of mercurials. Biochemistry 28:1183–1194. doi:10.1021/bi00429a036

    Article  CAS  Google Scholar 

  • Moore MJ, Distefano MD, Zydowsky LD, Cumming RT, Walsh CT (1990) Organomercurial lyase and mercuric ion reductase—natures mercury detoxification catalysts. Acc Chem Res 23:301–308. doi:10.1021/ar00177a006

    Article  CAS  Google Scholar 

  • Morel FMM, Kraepiel AML, Amyot M (1998) Chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566. doi:10.1146/annurev.ecolsys.29.1.543

    Article  Google Scholar 

  • Mukhopadhyay D, Yu H, Nucifora G, Misra TK (1991) Purification and functional characterization of Mer D. J Biol Chem 266:18538–18542

    CAS  Google Scholar 

  • Murtaza I, Dutt A, Ali A (2002a) Biomolecular engineering of Escherichia coli organomercurial lyase gene and its expression. Indian J Biotechnol 1:117–120

    CAS  Google Scholar 

  • Murtaza I, Dutt A, Ali A (2002b) Relationship between the persistence of mer operon sequences in Escherichia coli and their resistance to mercury. Curr Microbiol 44:178–183. doi:10.1007/s00284-001-0085-6

    Article  CAS  Google Scholar 

  • Murtaza I, Dutt A, Mushtaq D, Ali A (2005) Molecular cloning and genetic analysis if functional mer B gene from Indian isolates of Escherichia coli. Curr Microbiol 51:297–302. doi:10.1007/s00284-005-0013-2

    Article  CAS  Google Scholar 

  • Nascimento AMA, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res 2(1):92–101

    Google Scholar 

  • Ng SP, Davis B, Polombo EA, Bhave M (2009) Tn5051 like mer containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes 38(2). doi:10.1186/1756-0500-2-38

  • Nishigaki S, Harada M (1975) Methylmercury and selenium in umbilical cords of inhabitants of Minamata area. Nature 258:324–325. doi:10.1038/258324a0

    Article  CAS  Google Scholar 

  • Nucifora G, Silver S, Misra TK (1989) Down regulation of mercury resistance operon by the promoter, distal gene mer D. Mol Gen Genet 220:69–72

    Article  CAS  Google Scholar 

  • Ogunseitan AO (2002) Episodic bioavailability of environmental mercury: implications for biotechnological control of mercury pollution. Afr J Biotechnol 1(1):1–9

    CAS  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity, and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262. doi:10.1111/j.1574-6976.1997.tb00300.x

    Article  CAS  Google Scholar 

  • Palmer M (2001) Cloning and characterization of a mer operon from natural aquatic bacteria. J Undergrad Res 19:3–198

    Google Scholar 

  • Pedersen MB, Hansen JC, Mulvad G, Pedersen SH, Gregersen M, Danscher G (1999) Accumulation in brains from population exposed to high and low dietary levels of methylmercury. Int J Circumpolar Health 58:96–107

    CAS  Google Scholar 

  • Pitts KE, Summers AO (2002) Role of thiols in the bacterial organomercurial lyase. Biochemistry 41(32):10287–10296. doi:10.1021/bi0259148

    Article  CAS  Google Scholar 

  • Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM (1994) Effects of methylmercury on the cell cycle of primary rat CNS invitro. Toxicol Appl Pharmacol 127:83–90. doi:10.1006/taap.1994.1142

    Article  CAS  Google Scholar 

  • Poulain AJ, Chadhain SMN, Ariya AP, Amyot M, Garcia E, Campbell PGC, Zylstra GJ, Barkay T (2007) Potential for mercury reduction by microbes in high Arctic. Appl Environ Microbiol 73(7):2230–2238. doi:10.1128/AEM.02701-06

    Article  CAS  Google Scholar 

  • Quilbe R, Pieri I, Wicherek S, Dugas N, Tasteyre A, Thomas Y, Oudinet JP (2004) Combinatory chemical and biological approaches to investigate metal elements in agricultural runoff water. J Environ Qual 33:149–153

    Article  CAS  Google Scholar 

  • Radstrom P, Skold O, Swedberg G, Flensburg J, Roy PH, Sundstrom J (1994) Transposon Tn5090 of plasmid R751, which carries integron, is related to Tn7, Mu and retroelements. J Bacteriol 176:3257–3268

    CAS  Google Scholar 

  • Rasmussen LD, Zawadsky C, Binnerup SJ, Oregaard G, Sorensen SJ, Kroer N (2008) Cultivation of hard to culture subsurface mercury resistant bacteria and discovery of new merA gene sequences. Appl Environ Microbiol 74(12):3795–3803. doi:10.1128/AEM.00049-08

    Article  CAS  Google Scholar 

  • Report ASTDR (2003) CERCLA priority list of hazardous substances. US Department of Health and Human services, Atlanta. http://www.atsdr.cdc.gov

  • Richmond MH, John M (1964) Cotransduction by Staphylococcal phage of the genes responsible for pencillinase synthesis and resistance to mercury salts. Nature 202:1360–1361. doi:10.1038/2021360a0

    Article  CAS  Google Scholar 

  • Ruiz NO, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:1–7

    Article  CAS  Google Scholar 

  • Sasaki Y, Minakawa T, Miyazaki A, Silver S, Kusano T (2005) Functional dissection of a mercuric ion transporter Mer C from Acidithiobacillus ferrooxidans. Biosci Biotechnol Biochem 69(7):1394–1402. doi:10.1271/bbb.69.1394

    Article  CAS  Google Scholar 

  • Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF (1991) Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352:168–172. doi:10.1038/352168a0

    Article  CAS  Google Scholar 

  • Schue M, Dover LG, Besra GS, Parkhill J, Brown NL (2009) Sequence and analysis of a plasmid encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J Bacteriol 191(1):439–444. doi:10.1128/JB.01063-08

    Article  CAS  Google Scholar 

  • Silver S (1996) Bacterial resistance to toxic metal ions. Gene 179:9–19. doi:10.1016/S0378-1119(96)00323-X

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance—new surprises. Annu Rev Microbiol 50:753–789. doi:10.1146/annurev.micro.50.1.753

    Article  CAS  Google Scholar 

  • Srivastava RC (2003) Guidance and awareness raising materials under new UNEP mercury program-a report. Centre for environment pollution monitoring and mitigation, Lucknow

    Google Scholar 

  • Summers AO (2009) Damage control: regulating defenses against toxic metals and metalloids. Curr Opin Microbiol 12:1–7. doi:10.1016/j.mib.2009.02.003

    Article  CAS  Google Scholar 

  • Summers AO, Silver S (1978) Microbial transformation of metals. Annu Rev Microbiol 32:637–672. doi:10.1146/annurev.mi.32.100178.003225

    Article  CAS  Google Scholar 

  • Syversen TL (1982) Effects of repeated dosing of methyl mercury on in vivo protein synthesis in isolated neurones. Acta Pharmacol Toxicol (Copenh) 50(5):391–397

    CAS  Google Scholar 

  • Walsh CT, Begley TP, Walts AE (1987) Bacterial organomercury lyase: a protonolytic detoxification catalyst. Pure Appl Chem 59(3):295–298. doi:10.1351/pac198759030295

    Article  CAS  Google Scholar 

  • Walum E, Eriksson G, Peterson A, Holme E, Larsson NG, Eriksson C, El-Shamy W (1995) Use of primary cultures and continuous cell line to study effects on astrocytic regulatory functions. Clin Exp Pharmacol Physiol 22(4):284–287. doi:10.1111/j.1440-1681.1995.tb01996.x

    Article  CAS  Google Scholar 

  • Wang Y, Mahler I, Levinson HS, Halvorson HO (1987) Cloning and expression in Escherichia coli, chromosomal mercury resistance genes from Bacillus sp. J Bacteriol 169:4848–4851

    CAS  Google Scholar 

  • Wang Y, Moore M, Levinson HS, Silver S, Walsh CT, Mahler I (1989) Nucleotide sequence of a chromosomal mercury resistant determinant from a Bacillus sp. with broad spectrum mercury resistance. J Bacteriol 171:83–92

    CAS  Google Scholar 

  • Wilson JR, Leang C, Morby AP, Hobman JL, Brown NL (2000) Mer F, a mercury transport protein: different structure but a common mechanism for mercuric ion transport. FEBS Lett 472:78–82. doi:10.1016/S0014-5793(00)01430-7

    Article  CAS  Google Scholar 

  • Zalpus RK, Lash LH (1994) Advances in understanding renal transport and toxicity of mercury. J Toxicol Environ Health 42:1–44

    Article  Google Scholar 

  • Zalups RK (1991) Autometallographic localization of inorganic mercury in the kidneys of rat; effect of unilateral nephrectomy and compensatory renal growth. Exp Mol Pathol 54:10–21. doi:10.1016/0014-4800(91)90039-Z

    Article  CAS  Google Scholar 

  • Zalups RK (1993) Early aspects of intrarenal distribution of mercury after the intravenous administration of mercuric chloride. Toxicology 79:215–238. doi:10.1016/0300-483X(93)90213-C

    Article  CAS  Google Scholar 

  • Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qazi Mohd. Rizwanul Haq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jan, A.T., Murtaza, I., Ali, A. et al. Mercury pollution: an emerging problem and potential bacterial remediation strategies. World J Microbiol Biotechnol 25, 1529–1537 (2009). https://doi.org/10.1007/s11274-009-0050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0050-2

Keywords

Navigation