Skip to main content
Log in

Influence of pH on the Toxicity of Silver Nanoparticles in the Green Alga Chlamydomonas acidophila

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of pH 4 and 7 on the cellular toxicity impact of silver nanoparticles (AgNPs) on the green alga Chlamydomonas acidophila. Changes in chlorophyll content, cellular viability, and reactive oxygen species (ROS) formation were determined permitting the characterization of the toxicity of AgNPs. Chemical characterization of AgNPs in suspension showed that nanoparticle size distribution was dependent to the pH of the culture medium, and a higher solubility was observed at pH 4 compared to that at pH 7. After 24 h of exposure, results indicated that the chlorophyll content and cellular viability decreased significantly, while the intracellular ROS production increased significantly, in relation to the increasing concentration of AgNPs (0.1–100 mg/L). Therefore, our results demonstrated that AgNP-induced toxicity was pH dependent as indicated by the cytotoxicity mediated through the induction of oxidative stress. In conclusion, the characterization of the physicochemical properties of AgNPs in aqueous solution having different pH is essential for the understanding of their toxicity impact on algal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AshaRani, P. V., Mun, G. L. K., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 32, 79–290.

    Google Scholar 

  • Baalousha, M., Manciulea, A., Cumberland, S., & Kendall, K. (2008). Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environmental Toxicology and Chemistry, 27, 1875–1882.

    Article  CAS  Google Scholar 

  • Campbell, P. G. C., & Stokes, P. M. (1985). Acidification and toxicity of metals to aquatic biota. Canadian Journal of Fisheries and Aquatic Sciences, 42, 2034–2049.

    Article  CAS  Google Scholar 

  • Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., et al. (2008). Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. Journal of Physical Chemistry B, 112, 13608–13619.

    CAS  Google Scholar 

  • Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42, 4583–4588.

    Article  CAS  Google Scholar 

  • Dewez, D., & Oukarroum, A. (2012). Alteration of photosystem II photochemistry induced by silver nanoparticles on the green alga Chlamydomonas reinhardtii indicated by chlorophyll a fluorescence. Toxicological and Environmental Chemistry, 94, 1536–1546.

    Article  CAS  Google Scholar 

  • Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., & Lead, J. R. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment International, 37, 517–531.

    Article  CAS  Google Scholar 

  • Franklin, N. M., Stauber, J. L., Markich, S. J., & Lim, R. P. (2000). pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquatic Toxicology, 48, 275–289.

    Article  CAS  Google Scholar 

  • Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science and Technology, 41, 8484–8490.

    Article  CAS  Google Scholar 

  • Ghosh, S., Mashayekhi, H., Pan, B., Bhowmik, P., & Xing, B. (2008). Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir, 24, 12385–12391.

    Article  CAS  Google Scholar 

  • Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11, 77–89.

    Article  CAS  Google Scholar 

  • Keller, A. A., Wang, H. T., Zhou, D. X., Lenihan, H. S., Cherr, G., Cardinale, B. J., et al. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science and Technology, 44, 1962–1967.

    Article  CAS  Google Scholar 

  • Kim, E., Kim, S. H., Kim, H. C., Lee, S. G., Lee, S. J., & Jeong, S. W. (2011). Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicology and Environmental Health Sciences, 3, 1–6.

    Article  Google Scholar 

  • Lessmann, D., Fyson, A., & Nixdorf, B. (2000). Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH < 3. Hydrobiologia, 433, 123–128.

    Article  Google Scholar 

  • Levard, C., Hotze, E. M., Lowry, G. V., & Brown, G. E., Jr. (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environmental Science and Technology, 46, 6900–6914.

    Article  CAS  Google Scholar 

  • Macfie, S. M., Tarmohamed, Y., & Welbourn, P. M. (1994). Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH. Archives of Environmental Contamination and Toxicology, 27, 454–458.

    Article  CAS  Google Scholar 

  • Mayer, P., Kuhel, R., & Nyholm, N. (1997). A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Research, 31, 2525–2531.

    Article  CAS  Google Scholar 

  • Meador, J. P. (1991). The interaction of pH, dissolved organic carbon and total copper in the determination of ionic copper and toxicity. Aquatic Toxicology, 19, 13–32.

    Article  CAS  Google Scholar 

  • Miao, A. J., Schwehr, K. A., Xu, C., Zhang, S. J., Luo, Z., Quigg, A., et al. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution, 157, 3034–3041.

    Article  CAS  Google Scholar 

  • Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., et al. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42, 8959–8964.

    Article  CAS  Google Scholar 

  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  CAS  Google Scholar 

  • Olaveson, M. M., & Stokes, P. M. (1989). Responses of the acidophilic alga Euglena mutabilis (Euglenophyceae) to carbon enrichment at pH 3. Journal of Phycology, 25, 529–539.

    Article  Google Scholar 

  • Oukarroum, A., Polchtchikov, S., Perreault, F., & Popovic, R. (2012a). Temperature influence on silver nanoparticles inhibitory on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Environmental Science and Pollution Research, 19, 1755–1762.

    Article  CAS  Google Scholar 

  • Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012b). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85.

    Article  CAS  Google Scholar 

  • Oukarroum, A., Barhoumi, L., Pirastru, L., & Dewez, D. (2013). Silver nanoparticles toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environmental Toxicology and Chemistry, 32, 902–907.

    Article  CAS  Google Scholar 

  • Panessa-Warren, B. J., Maye, M. M., Warren, J. B., & Crosson, K. M. (2009). Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environmental Pollution, 157, 1140–1151.

    Article  CAS  Google Scholar 

  • Petit, A. N., Eullaffroy, P., Debenest, T., & Gagné, F. (2010). Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquatic Toxicology, 100, 187–193.

    Article  CAS  Google Scholar 

  • Petit, A. N., Debenest, T., Eullaffroy, P., & Gagné, F. (2012). Effects of a cationic PAMAM dendrimer on photosynthesis and ROS production of Chlamydomonas reinhardtii. Nanotoxicology, 6, 315–326.

    Article  CAS  Google Scholar 

  • Regel, R. H., Ferris, J. M., Ganf, G. G., & Brookes, J. D. (2002). Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquatic Toxicology, 59, 209–223.

    Article  CAS  Google Scholar 

  • Sager, T. M., Porter, D. W., Robinson, V. A., Lindsley, W. G., Schwegler-Berry, D. E., & Castranova, V. (2007). Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology, 1, 118–129.

    Article  CAS  Google Scholar 

  • Schubauer-Berigan, M. K., Dierkes, J. R., Monson, P. D., & Ankley, G. T. (1993). pH-dependent toxicity of Cd, Cu, Ni, Pb, and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Lumbriculus variegatus. Environmental Toxicology and Chemistry, 12, 1261–1266.

    Article  CAS  Google Scholar 

  • Szivák, I., Behra, R., & Sigg, L. (2009). Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). Journal of Phycology, 45, 427–435.

    Article  Google Scholar 

  • Turner, A., Brice, D., & Brown, M. T. (2012). Interactions of silver nanoparticles with the marine macroalga, Ulva lactuca. Ecotoxicology, 21, 148–154.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, X., Chen, Y., Sommerfeld, M., & Hu, Q. (2008). Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere, 73, 1121–1128.

    Article  CAS  Google Scholar 

  • Wellburn, R. (1994). The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (2001). Limnology-Lake and River Ecosystems. San Diego: Academic.

    Google Scholar 

  • Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., et al. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2, 2121–2134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dewez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oukarroum, A., Samadani, M. & Dewez, D. Influence of pH on the Toxicity of Silver Nanoparticles in the Green Alga Chlamydomonas acidophila . Water Air Soil Pollut 225, 2038 (2014). https://doi.org/10.1007/s11270-014-2038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2038-2

Keywords

Navigation