Skip to main content
Log in

Kinetics and potency of halothane, isoflurane, and desflurane in the Northern Leopard frog Rana pipiens

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Equilibration between delivered and effect site anesthetic partial pressure is slow in frogs. The use of less soluble agents or overpressure delivery may speed equilibration. Ten Northern leopard frogs were exposed to 3-4 constant concentrations of halothane, isoflurane or desflurane and their motor response to noxious electrical stimulation of the forelimb evaluated every 30 minutes until a stable proportion of frogs were immobile. Each frog received each anesthetic and concentration in random order and allowed at least 14 hours to recover between anesthetic exposures. An overpressure technique based upon the kinetics in the first study was then tested with 4 concentrations of desflurane. For halothane, isoflurane and desflurane respectively; the proportion of frogs immobile in response to stimulus became stable after 510, 480 and 180 minutes, and ED50 values were 1.36, 1.67 and 6.78 % atm. Desflurane ED50 delivered by overpressure was not significantly different at 6.85 % atm. Halothane, isoflurane and desflurane are effective general anesthetics in frogs with potencies similar to those reported in mammals. The time required for anesthetic equilibration is fastest with desflurane and can be hastened further by initial delivery of higher partial pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antognini, J.F., Lewis, B.K. and Reitan, J.A., 1994. Hypothermia minimally decreases nitrous oxide anesthetic requirements. Anesthesia and Analgesia, 79, 980–982

    Article  PubMed  CAS  Google Scholar 

  • Barter, L.S., Mark, L.O., Smith, A.C. and Antognini, J.F., 2007. Isoflurane Potency in the Northern Leopard Frog Rana pipiens is Similar to That in Mammalian Species and is Unaffected by Decerebration. Veterinary Research Communications, 31, 757–763

    Article  PubMed  CAS  Google Scholar 

  • Cakir, Y. and Strauch, S.M., 2005. Tricaine (MS-222) is a safe anesthetic compound compared to benzocaine and pentobarbital to induce anesthesia in leopard frogs (Rana pipiens). Pharmacological Reports, 57, 467–474

    PubMed  CAS  Google Scholar 

  • Cherkin, A. and Catchpool, J.F., 1964. Temperature Dependence of Anesthesia in Goldfish. Science, 144, 1460–1462

    Article  PubMed  CAS  Google Scholar 

  • Davis, N.L., Nunnally, R.L. and Malinin, T.I., 1975. Determination of the minimum alveolar concentration (MAC) of halothane in the white New Zealand rabbit. Brittish Journal of Anaesthesia, 47, 341–345

    Article  CAS  Google Scholar 

  • Delong, K.T., 1962. Quantitative analysis of blood circulation through the frog heart. Science, 138, 693–694

    Article  PubMed  CAS  Google Scholar 

  • Eger, E.I., 2nd, 1987. Partition coefficients of I-653 in human blood, saline, and olive oil. Anesthesia and Analgesia, 66, 971–973

    PubMed  CAS  Google Scholar 

  • Eger, E.I., 2nd, Brandstater, B., Saidman, L.J., Regan, M.J., Severinghaus, J.W. and Munson, E.S., 1965a. Equipotent alveolar concentrations of methoxyflurane, halothane, diethyl ether, fluroxene, cyclopropane, xenon and nitrous oxide in the dog. Anesthesiology, 26, 771–777

    PubMed  Google Scholar 

  • Eger, E.I., 2nd and Johnson, B.H., 1987. Rates of awakening from anesthesia with I-653, halothane, isoflurane, and sevoflurane: a test of the effect of anesthetic concentration and duration in rats. Anesthesia and Analgesia, 66, 977–982

    PubMed  CAS  Google Scholar 

  • Eger, E.I., 2nd, Saidman, L.J. and Brandstater, B., 1965b. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology, 26, 756–763

    PubMed  Google Scholar 

  • Eger, E.I., 2nd, Saidman, L.J. and Brandstater, B., 1965c. Temperature dependence of halothane and cyclopropane anesthesia in dogs: correlation with some theories of anesthetic action. Anesthesiology, 26, 764–770

    PubMed  CAS  Google Scholar 

  • Epstein, R.H., Stein, A.L., Marr, A.T. and Lessin, J.B., 1998. High concentration versus incremental induction of anesthesia with sevoflurane in children: a comparison of induction times, vital signs, and complications. Journal of Clinical Anesthesia, 10, 41–45

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx, J.F., Vandeput, D.M., De Geyndt, A.M., De Ridder, K.P., Haenen, J.S., Deloof, T. and De Wolf, A.M., 2000. Maintaining sevoflurane anesthesia during low-flow anesthesia using a single vaporizer setting change after overpressure induction. Journal of Clinical Anesthesia, 12, 303–307

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, A., Franks, N.P. and Lieb, W.R., 1999. Effects of temperature and volatile anesthetics on GABA(A) receptors. Anesthesiology, 90, 484–491

    Article  PubMed  CAS  Google Scholar 

  • Laster, M.J., Liu, J., Eger, E.I., 2nd and Taheri, S., 1993. Electrical stimulation as a substitute for the tail clamp in the determination of minimum alveolar concentration. Anesthesia and Analgesia, 76, 1310–1312

    Article  PubMed  CAS  Google Scholar 

  • Moalli, R., Meyers, R.S., Jackson, D.C. and Millard, R.W., 1980. Skin circulation of the frog, Rana catesbeiana: distribution and dynamics. Respiration Physiology, 40, 137–148

    Article  PubMed  CAS  Google Scholar 

  • Piiper, J. and Scheid, P., 1975. Gas transport efficacy of gills, lungs and skin: theory and experimental data. Respiration Physiology, 23, 209–221

    Article  PubMed  CAS  Google Scholar 

  • Pinder, A.W. and Burggren, W.W., 1986. Ventilation and partitioning of oxygen uptake in the frog Rana pipiens: effects of hypoxia and activity. Journal of Experimental Biology, 126, 453–468

    PubMed  CAS  Google Scholar 

  • Quasha, A.L., Eger, E.I., 2nd and Tinker, J.H., 1980. Determination and applications of MAC. Anesthesiology, 53, 315–334

    Article  PubMed  CAS  Google Scholar 

  • Scheller, M.S., Zornow, M.H., Fleischer, J.E., Shearman, G.T. and Greber, T.F., 1989. The noncompetitive N-methyl-D-aspartate receptor antagonist, MK-801 profoundly reduces volatile anesthetic requirements in rabbits. Neuropharmacology, 28, 677–681

    Article  PubMed  CAS  Google Scholar 

  • Shim, C.Y. and Andersen, N.B., 1971. The effect of oxygen on minimal anesthetic requirements in the toad. Anesthesiology, 34, 333–337

    Article  PubMed  CAS  Google Scholar 

  • Shim, C.Y. and Andersen, N.B., 1972. Minimal alveolar concentration (MAC) and dose-response curves in anesthesia. Anesthesiology, 36, 146–151

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.M. and Stump, K.C., 2000. Isoflurane anesthesia in the African clawed frog (Xenopus laevis). Contemporary Topics Laboratory Animal Science, 39, 39–42

    CAS  Google Scholar 

  • Sonner, J.M., Gong, D. and Eger, E.I., 2nd, 2000. Naturally occurring variability in anesthetic potency among inbred mouse strains. Anesthesia and Analgesia, 91, 720–726

    Article  PubMed  CAS  Google Scholar 

  • Sonner, J.M., Gong, D., Li, J., Eger, E.I., 2nd and Laster, M.J., 1999. Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesthesia and Analgesia, 89, 1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Stahl, W.R., 1967. Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22, 453–460

    PubMed  CAS  Google Scholar 

  • Tazawa, H., Mochizuki, M. and Piiper, J., 1979. Respiratory gas transport by the incompletely separated double circulation in the bullfrog, Rana catesbeiana. Respiration Physiology, 36, 77–95

    Article  PubMed  CAS  Google Scholar 

  • Vitez, T.S., White, P.F. and Eger, E.I., 2nd, 1974. Effects of hypothermia on halothane MAC and isoflurane MAC in the rat. Anesthesiology, 41, 80–81

    Article  PubMed  CAS  Google Scholar 

  • Wass, J.A. and Kaplan, H.M., 1974. Methoxyflurane anesthesia for Rana pipiens. Laboratory Animal Science, 24, 669-671

    PubMed  CAS  Google Scholar 

  • West, N.H. and Smits, A.W., 1994. Cardiac output in conscious toads (Bufo marinus). Journal of Experimental Biology, 186, 315–323

    PubMed  CAS  Google Scholar 

  • Yasuda, N., Lockhart, S.H., Eger, E.I., 2nd, Weiskopf, R.B., Johnson, B.H., Freire, B.A. and Fassoulaki, A., 1991. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology, 74, 489–498

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, N., Targ, A.G. and Eger, E.I., 2nd, 1989. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesthesia and Analgesia, 69, 370–373

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, N., Targ, A.G., Eger, E.I., 2nd, Johnson, B.H. and Weiskopf, R.B., 1990. Pharmacokinetics of desflurane, sevoflurane, isoflurane, and halothane in pigs. Anesthesia and Analgesia, 71, 340–348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by NIH grants GM47818, GM57970 and GM61283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Barter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barter, L.S., Antognini, J.F. Kinetics and potency of halothane, isoflurane, and desflurane in the Northern Leopard frog Rana pipiens . Vet Res Commun 32, 357–365 (2008). https://doi.org/10.1007/s11259-008-9041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-008-9041-2

Keywords

Navigation