Skip to main content
Log in

Numerical Estimation of Fretting Fatigue Lifetime Using Damage and Fracture Mechanics

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Fretting fatigue is a complex tribological phenomenon that can cause premature failure of connected components that have small relative oscillatory movement. The fraction of fretting fatigue lifetime spent in crack initiation and in crack propagation depends on many factors, e.g., contact stresses, amount of slip, frequency, environmental conditions, etc., and varies from one application to another. Therefore, both crack initiation and propagation phases are important in analysing fretting fatigue. In this investigation, a numerical approach is used to predict these two portions and estimate fretting fatigue failure lifetime under a conformal contact configuration. For this purpose, an uncoupled damage evolution law based on principles of continuum damage mechanics is developed for modelling crack initiation. The extended finite element method approach is used for calculating crack propagation lifetimes. The estimated results are validated with previously reported experimental data and compared with other available methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hills, D.A., Nowell, D.: Mechanics of Fretting Fatigue. Solid Mechanics and its Applications vol. 30. Kluwer Academic Publishers, Dordrecht (1994)

  2. Smith, K.N., Watson, P., Topper, T.H.: A stress-strain function for the fatigue of metals. J Mater. (JMSLA) 4, 767–778 (1970)

    Google Scholar 

  3. Szolwinski, M.P., Farris, T.N.: Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear 221(1), 24–36 (1998)

    Article  CAS  Google Scholar 

  4. Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11(3), 149–165 (1988)

    Article  Google Scholar 

  5. Navarro, C., Muñoz, S., Domínguez, J.: On the use of multiaxial fatigue criteria for fretting fatigue life assessment. Int. J. Fatigue 30(1), 32–44 (2008)

    Article  CAS  Google Scholar 

  6. Giner, E., Tur, M., Vercher, A., Fuenmayor, F.J.: Numerical modelling of crack-contact interaction in 2D incomplete fretting contacts using X-FEM. Tribol. Int. 42(9), 1269–1275 (2009)

    Article  Google Scholar 

  7. Giner, E., Navarro, C., Sabsabi, M., Tur, M., Domínguez, J., Fuenmayor, F.J.: Fretting fatigue life prediction using the extended finite element method. Int. J. Mech. Sci. 53(3), 217–225 (2011)

    Article  Google Scholar 

  8. McDiarmid, D.L.: A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 14(4), 429–453 (1991)

    Article  Google Scholar 

  9. Findley, W.N., Brown University, Division of Engineering, United States, Office of Ordnance R.: A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending. Division of Engineering, Brown University, Providence, RI (1958)

  10. Lee, H., Jin, O., Mall, S.: Fretting fatigue behavior of Ti–6Al–4 V with dissimilar mating materials. Int. J. Fatigue 26(4), 393–402 (2004)

    Article  CAS  Google Scholar 

  11. Murthy, H., Mseis, G., Farris, T.N.: Life estimation of Ti–6Al–4 V specimens subjected to fretting fatigue and effect of surface treatments. Tribol. Int. 42(9), 1304–1315 (2009)

    Article  CAS  Google Scholar 

  12. Crossland, B.: Effect of large hydrostatic pressures on torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals (1956)

  13. Quraishi, S.M., Khonsari, M.M., Baek, D.K.: A thermodynamic approach for predicting fretting fatigue life. Tribol. Lett. 19(3), 169–175 (2005)

    Article  Google Scholar 

  14. Aghdam, A.B., Beheshti, A., Khonsari, M.M.: On the fretting crack nucleation with provision for size effect. Tribol. Int. 47, 32–43 (2012)

    Article  Google Scholar 

  15. Zhang, T., McHugh, P.E., Leen, S.B.: Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. Int. J. Fatigue 44, 260–272 (2012)

    Article  CAS  Google Scholar 

  16. Hojjati-Talemi, R., Wahab, M.A.: Fretting fatigue crack initiation lifetime predictor tool: using damage mechanics approach. Tribol. Int. 60, 176–186 (2013)

    Article  Google Scholar 

  17. Rooke, D.P., Jones, D.A.: Stress intensity factors in fretting fatigue. J. Strain Anal. Eng. Des. 14(1), 1–6 (1979)

    Article  Google Scholar 

  18. Kondoh, K., Mutoh, Y.: Crack behavior in the early stage of fretting fatigue fracture. In: Hoeppner, D.W., Chandrasekaran, V., Elliott, C.B. (eds) Fretinge Fatigue: Current Technology and Practices, ASTM STP 1367. American society for Testing and Materials, West Conshohocken, PA (2000)

  19. Nicholas, T., Hutson, A., John, R., Olson, S.: A fracture mechanics methodology assessment for fretting fatigue. Int. J. Fatigue 25(9–11), 1069–1077 (2003)

    Article  CAS  Google Scholar 

  20. Muñoz, S., Navarro, C., Domínguez, J.: Application of fracture mechanics to estimate fretting fatigue endurance curves. Eng. Fract. Mech. 74(14), 2168–2186 (2007)

    Article  Google Scholar 

  21. Navarro, C., Muñoz, S., Domínguez, J.: Influence of the initiation length in predictions of life in Fretting Fatigue. Strain 47, e283–e291 (2011)

    Article  Google Scholar 

  22. Sabsabi, M., Giner, E., Fuenmayor, F.J.: Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. Int. J. Fatigue 33(6), 811–822 (2011)

    Article  Google Scholar 

  23. Hojjati-Talemi, R., AbdelWahab, M., De Baets, P.: Numerical investigation into effect of contact geometry on fretting fatigue crack propagation lifetime. Tribol. Trans. 55(3), 365–375 (2012)

    Article  CAS  Google Scholar 

  24. Talemi, R.H., Wahab, M.A., Baets, P.D.: Numerical modelling of fretting fatigue. J. Phys: Conf. Ser. 305(1), 012061 (2011)

    Article  Google Scholar 

  25. Lemaitre, J.: Coupled elasto-plasticity and damage constitutive equations. Comput. Meth. Appl. Mech. Eng. 51(1–3), 31–49 (1985)

    Article  Google Scholar 

  26. Mutoh, Y., Xu, J.Q., Kondoh K.: Observations and analysis of fretting fatigue crack initiation and propagation. In: Mutoh, Y., Kinyon, S.E., Hoeppner, D.W. (eds) Fretting Fatigue: Advances In Basic Understanding And Applications. Stp, vol. 1425, pp. 61–75. ASTM International, West Conshohocken, PA (2003)

  27. Talemi, R.H., Wahab, M.A.: Finite element analysis of localized plasticity in Al 2024-T3 subjected to fretting fatigue. Tribol. Trans. 55(6), 805–814 (2012)

    Article  CAS  Google Scholar 

  28. Kindervater, C.M., Johnson, A., Kohlgrüber, D., Lützenburger, M.: Crash and High Velocity Impact Simulation Methodologies for Aircraft Structures. Structural Failure and Plasticity (IMPLAST 2000) IMPLAST (2000)

  29. Kachanov, L.M.: Time of the rupture process under creep conditions. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. 8, 26–31 (1958)

    Google Scholar 

  30. Lemaitre, J.: Formulation and identification of damage kinetic constitutive equations. In: Krajcinovic, D., Lemaitre J. (eds.) Continuum Damage Mechanics: Theory and Applications CISM Courses and Lectures No. 295, pp. 37–99. Springer, Wien (1987)

  31. Lemaitre, J.: Engineering Damage Mechanics. Springer, The Netherlands (2005)

    Google Scholar 

  32. Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80(2), 233–245 (1984)

    Article  Google Scholar 

  33. Marmi, A.K., Habraken, A.M., Duchene, L.: Multiaxial fatigue damage modelling at macro scale of Ti–6Al–4 V alloy. Int. J. Fatigue 31(11–12), 2031–2040 (2009)

    Article  CAS  Google Scholar 

  34. El Haddad, M.H., Dowling, N.E., Topper, T.H., Smith, K.N.: J integral applications for short fatigue cracks at notches. Int. J. Fract. 16(1), 15–30 (1980)

    Article  Google Scholar 

  35. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  Google Scholar 

  36. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    Article  Google Scholar 

  37. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    Article  Google Scholar 

  38. Giner, E., Sukumar, N., Denia, F.D., Fuenmayor, F.J.: Extended finite element method for fretting fatigue crack propagation. Int. J. Solids Struct. 45(22–23), 5675–5687 (2008)

    Article  Google Scholar 

  39. Lykins, C.D., Mall, S., Jain, V.K.: Combined experimental-numerical investigation of fretting fatigue crack initiation. Int. J. Fatigue 23(8), 703–711 (2001)

    Article  CAS  Google Scholar 

  40. Navarro, C., Garcia, M., Dominguez, J.: A procedure for estimating the total life in fretting fatigue. Fatigue Fract. Eng. Mater. Struct. 26(5), 459–468 (2003)

    Article  Google Scholar 

  41. Giner, E., Hills, D.A., Fuenmayor, F.J.: Complete elastic contact subject to cyclic shear in partial slip. J. Eng. Mech.-ASCE 131(11), 1146–1156 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ghent University for the financial support received by the Special Funding of Ghent University, BOF (Bijzonder Onderzoeksfonds), in the framework of project (BOF 01N02410) and gratefully acknowledge the financial support provided by the Spanish Ministry of Economics and Competitiveness through the project DPI2010-20990.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hojjati-Talemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hojjati-Talemi, R., Wahab, M.A., Giner, E. et al. Numerical Estimation of Fretting Fatigue Lifetime Using Damage and Fracture Mechanics. Tribol Lett 52, 11–25 (2013). https://doi.org/10.1007/s11249-013-0189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0189-8

Keywords

Navigation