Skip to main content
Log in

Helix and H-bond formations of alanine-based peptides containing basic amino acids

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We studied comprehensively the helicity and H-bonding evolutions during the folding processes of Lys- and Arg-containing alanine-based peptides. The evolution of α-helical conformation concerning the entire sequence and each amino acid residue was examined, as well as the helix-forming propensities were characterized. The formation of various types of the intramolecular H-bonds was also investigated, pointing out the helix-stabilizing role of local interactions and the destabilizing role of non-local interplays. Our study led to the observation that the non-local H-bonds affected the evolution of helical conformations, as well as the entire folding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eaton WA, Munoz V, Hagen SJ, Jas GS, Lapidus LJ, Henry ER, Hofrichter J (2000) Annu Rev Biophys Biomol Struct 29:327–359

    Article  CAS  Google Scholar 

  2. Shea J-E, Brooks CL III (2001) Annu Rev Phys Chem 52:499–535

    Article  CAS  Google Scholar 

  3. Daggett V, Fersht AR (2003) Trends Biochem Sci 28:18–25

    Article  CAS  Google Scholar 

  4. Ferguson N, Fersht AR (2003) Curr Opin Struct Biol 13:75–81

    Article  CAS  Google Scholar 

  5. De Mori GMS, Meli M, Monticelli L, Colombo G (2005) Mini Rev Med Chem 5:353–359

    Article  Google Scholar 

  6. Osterhout JJ (2005) Protein Peptide Lett 12:159–164

    Article  CAS  Google Scholar 

  7. Baldwin RL (2007) J Mol Biol 371:283–301

    Article  CAS  Google Scholar 

  8. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) Annu Rev Biophys 37:289–316

    Article  CAS  Google Scholar 

  9. Morra G, Meli M, Colombo G (2008) Curr Protein Pept Sci 9:181–196

    Article  CAS  Google Scholar 

  10. Aurora R, Creamer TP, Srinivasan R, Rose GD (1997) J Biol Chem 272:1413–1416

    Article  CAS  Google Scholar 

  11. Makhatadze GI (2005) Adv Protein Chem 72:199–226

    Article  Google Scholar 

  12. Marqusee S, Baldwin RL (1987) Proc Natl Acad Sci USA 84:8898–8902

    Article  CAS  Google Scholar 

  13. Marqusee S, Robbins VH, Baldwin RL (1989) Proc Natl Acad Sci USA 86:5286–5290

    Article  CAS  Google Scholar 

  14. Miick SM, Martinez GV, Fiori WR, Todd AP, Millhauser GL (1992) Nature 359:653–655

    Article  CAS  Google Scholar 

  15. Rohl CA, Scholtz JM, York EJ, Stewart JM, Baldwin RL (1992) Biochemistry 31:1263–1269

    Article  CAS  Google Scholar 

  16. Fiori WR, Miick SM, Millhauser GL (1993) Biochemistry 32:11957–11962

    Article  CAS  Google Scholar 

  17. Miick SM, Casteel KM, Millhauser GL (1993) Biochemistry 32:8014–8021

    Article  CAS  Google Scholar 

  18. Chakrabartty A, Kortemme T, Baldwin RL (1994) Protein Sci 3:843–852

    Article  CAS  Google Scholar 

  19. Fiori WR, Lundberg KM, Millhauser GL (1994) Nature Struct Biol 1:374–377

    Article  CAS  Google Scholar 

  20. Smythe ML, Nakaie CR, Marshall GR (1995) J Am Chem Soc 117:10555–10562

    Article  CAS  Google Scholar 

  21. Yoder G, Pancoska P, Keiderling TA (1997) Biochemistry 36:15123–15133

    Article  CAS  Google Scholar 

  22. Silva RAGD, Nguyen JY, Decatur SM (2002) Biochemistry 41:15296–15303

    Article  Google Scholar 

  23. Wang T, Zhu Y, Getahun Z, Du D, Huang C-Y, DeGrado WF, Gai F (2004) J Phys Chem B 108:15301–15310

    Article  CAS  Google Scholar 

  24. Zagrovic B, Jayachandran G, Millett IS, Doniach S, Pande VS (2005) J Mol Biol 353:232–241

    Article  CAS  Google Scholar 

  25. Barber-Armstrong W, Donaldson T, Wijesooriya H, Silva RAGD, Decatur SM (2004) J Am Chem Soc 126:2339–2345

    Article  CAS  Google Scholar 

  26. Takekiyo T, Shimizu A, Kato M, Taniguchi Y (2005) Biochim Biophys Acta 1750:1–4

    CAS  Google Scholar 

  27. Millhauser GL, Stenland CJ, Hanson P, Bolin KA, van de Ven FJM (1997) J Mol Biol 267:963–974

    Article  CAS  Google Scholar 

  28. Freedberg DI, Venable RM, Rossi A, Bull TE, Pastor RW (2004) J Am Chem Soc 126:10478–10484

    Article  CAS  Google Scholar 

  29. Samuelson SO, Martyna GJ (1998) J Chem Phys 109:11061–11073

    Article  CAS  Google Scholar 

  30. Samuelson S, Martyna GJ (1999) J Phys Chem B 103:1752–1766

    Article  CAS  Google Scholar 

  31. Sorin EJ, Pande VS (2005) Biophys J 88:2472–2493

    Article  CAS  Google Scholar 

  32. Hénin J, Schulten K, Chipot C (2006) J Phys Chem B 110:16718–16723

    Article  Google Scholar 

  33. Garcia AE, Sanbonmatsu KY (2002) Proc Natl Acad Sci USA 99:2782–2787

    Article  CAS  Google Scholar 

  34. Nymeyer H, Garcia AE (2003) Proc Natl Acad Sci USA 100:13934–13939

    Article  CAS  Google Scholar 

  35. Shental-Bechor D, Kirca S, Ben-Tal N, Haliloglu T (2005) Biophys J 88:2391–2402

    Article  CAS  Google Scholar 

  36. Morozov AN, Lin SH (2006) J Phys Chem B 110:20555–20561

    Article  CAS  Google Scholar 

  37. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

  38. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  39. Lee MC, Duan Y (2004) Proteins 55:620–634

    Article  CAS  Google Scholar 

  40. Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 246:122–129

    Article  CAS  Google Scholar 

  41. Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  42. Tsui V, Case DA (2001) Biopolymers (Nucl Acid Sci) 56:275–291

    Article  CAS  Google Scholar 

  43. Weiser J, Shenkin PS, Still WC (1999) J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  44. Leitgeb B, Kerényi Á, Bogár F, Paragi G, Penke B, Rákhely G (2007) J Mol Model 13:1141–1150

    Article  CAS  Google Scholar 

  45. Wang W-Z, Lin T, Sun Y-C (2007) J Phys Chem B 111:3508–3514

    Article  CAS  Google Scholar 

  46. Topol IA, Burt SK, Deretey E, Tang T-H, Perczel A, Rashin A, Csizmadia IG (2001) J Am Chem Soc 123:6054–6060

    Article  CAS  Google Scholar 

  47. Zhang L, Hermans J (1994) J Am Chem Soc 116:11915–11921

    Article  CAS  Google Scholar 

  48. Takano M, Yamato T, Higo J, Suyama A, Nagayama K (1999) J Am Chem Soc 121:605–612

    Article  CAS  Google Scholar 

  49. Huo S, Straub JE (1999) Proteins 36:249–261

    Article  CAS  Google Scholar 

  50. Millhauser GL (1995) Biochemistry 34:3873–3877

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hungarian Scientific Research Fund (OTKA PD 78554), and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (B. Leitgeb), and by TÁMOP-4.2.1/B-09/1/KONV-2010-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Leitgeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitgeb, B., Janzsó, G., Hudoba, L. et al. Helix and H-bond formations of alanine-based peptides containing basic amino acids. Struct Chem 22, 1287–1295 (2011). https://doi.org/10.1007/s11224-011-9824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9824-x

Keywords

Navigation