Skip to main content
Log in

Polar Coronal Structures and the Global Magnetic Field Evolution Through the Cycle

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We compare the shape and position of some plasma formations visible in the polar corona with the cyclic evolution of the global magnetic field. The first type of object is polar crown prominences. A two-fold decrease of the height of polar crown prominences was found during their poleward migration from the middle latitudes to the poles before a polar magnetic field reversal. The effect could be assigned to a decrease of the magnetic field scale. The second type of object is the polar plumes, ray like structures that follow magnetic field lines. Tangents to polar ray structures are usually crossed near some point, “a magnetic focus,” below the surface. The distance q between the focus and the center of the solar disk changes from the maximum value about 0.65 R at solar minimum activity to the minimum value about 0.45 R at solar maximum. At first glance this behaviour seems to be contrary to the dynamics of spherical harmonics of the global magnetic field throughout a cycle. We believe that the problem could be resolved if one takes into account not only scale changes in the global magnetic field but also the phase difference in the cyclic variations of large-scale and small-scale components of the global field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. and Pneuman, G. W.: 1976, Solar Phys. 46, 185.

    Article  ADS  Google Scholar 

  • Altschuler, M. D. and Newkirk, G. Jr.: 1969, Solar Phys. 9, 131.

    Article  ADS  Google Scholar 

  • Altschuler, M. D., Levine, R. H., Stix, M., and Harvey, J. W.: 1977, Solar Phys. 51, 345.

    Article  ADS  Google Scholar 

  • Boguslavskaya, E. Ya.: 1958, in Total solar eclipses of 25 Feb. 1952 and 30 June 1954, Sov. Acad Sci. Press, p. 100.

  • Bravo, S., Stewart, G. A., and Blanco-Cano, X.: 1998, Solar Phys. 179, 223.

    Article  ADS  Google Scholar 

  • Chapman, S. and Bartels, J.: 1940, Geomagnetism, Oxford University Press, London.

    Google Scholar 

  • Dzubenko, N. I.: 1957, Astron. Zh. 34, 379.

    ADS  Google Scholar 

  • Ermakov, F. A., Obridko, V. N., and Shelting B. D.: 1995, Astron. Rep. 39, 672.

    ADS  Google Scholar 

  • Filippov, B. P. and Den, O. G.: 2000, Astron. Lett. 26, 322.

    Article  ADS  Google Scholar 

  • Filippov, B. P. and Den, O. G.: 2001, J. Geophys. Res. 106, 25177.

    Article  ADS  Google Scholar 

  • Filippov, B. P., Platov, Yu. V., Ajabshirizadeh, A., and Klepikov D. V.: 2004, Astron. Rep. 48, 781.

    Article  ADS  Google Scholar 

  • Gulyaev, R. A.: 1998, in Solar Jets and Coronal Plumes, ESA SP-421, p. 277.

  • Hoeksema, J. T., Wilcox, J. M., and Scherrer, P. H.: 1982, J. Geophys. Res. 87, 10331.

    Article  ADS  Google Scholar 

  • Koutchmy, S. and Bocchialini, K.: 1998, in Solar Jets and Coronal Plumes, ESA SP-421, p. 51.

  • Makarov, V. I.: 1994, Solar Phys. 150, 359.

    Article  ADS  Google Scholar 

  • Makarov, V. I.: 1998, in K. S. Balasubramaniam, J. Harvey and D. Rabin (eds.), Proc. 18th NSO Workshop, ASP Conference Series, 140, p. 83.

  • Makarov, V. I. and Filippov, B. P.: 2003, Solar Phys. 214, 55.

    Article  ADS  Google Scholar 

  • Makarov, V. I. and Sivaraman, K. R.: 1983, Solar Phys. 85, 227.

    Article  ADS  Google Scholar 

  • Makarov, V. I., Tlatov, A. G., and Sivaraman, K. R.: 2001, Solar Phys. 202, 11.

    Article  ADS  Google Scholar 

  • McIntosh, P. S.: 1972, Rev. Geophys. Space Phys. 10, 837.

    Article  ADS  Google Scholar 

  • McIntosh, P. S.: 1992, in K. L. Harvey (ed.), The Solar Cycle, Astron. Soc. Pac. Conf. Ser. 27, Astron. Soc. of the Pacific, San Francisco, Calif., 14.

  • Nesmyanovich, A. T.: 1962, Astron. Zh., 39, 996.

    ADS  Google Scholar 

  • Nikolsky, G. M.: 1953, Astron. Zh. 30, 286.

    Google Scholar 

  • Saito, K.: 1958, PASJ 10, 49.

    ADS  Google Scholar 

  • Schatten, K. H., Wilcox, J. M., and Ness, N. F.: 1969, Solar Phys. 6, 442.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Duvall, T. L., Jr., and Scherrer, P. H.: 1978, Solar Phys. 58, 225.

    Article  ADS  Google Scholar 

  • Tsubaki, T., Tominaya, S., Kubota, J., and Kawagushi, I.: 1964, PASJ 16, 13.

    ADS  Google Scholar 

  • Vsekhsviatsky, S. K. and Nikolsky, G. M.: 1955, Astron. Zh. 32, 354.

    Google Scholar 

  • Waldmeier, M.: 1965, Zs. Astrophys. 61, 186.

    ADS  Google Scholar 

  • Wang, Y.-M. and Sheeley, N. R, Jr.: 1992, Astrophys. J. 392, 310.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Filippov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, B.P., Platov, Y.V., Ajabshirizadeh, A. et al. Polar Coronal Structures and the Global Magnetic Field Evolution Through the Cycle. Sol Phys 224, 277–284 (2004). https://doi.org/10.1007/s11207-005-4280-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-005-4280-7

Keywords

Navigation