Skip to main content
Log in

3D tomographic imaging of the southern Apennines (Italy): A statistical approach to estimate the model uncertainty and resolution

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A new dataset of first P-wave arrival times is used to derive the 3D tomographic model of the Campania-Lucania region in the southern Apennines (Italy). We address the issue related to the non-uniqueness of the tomographic inversion solution through massive numerical experimentation based on the global exploration of the model parameter space starting from a large variety of physically plausible initial models. The average of all the realizations is adopted as the best-fit solution and the uncertainty of the model parameters is studied using a statistical approach based on a Monte Carlo-type analysis. How the uncertainty in the initial model, earthquake locations, and data influences the inversion result is studied by considering separately the individual effects. Checkerboard tests are performed to estimate the resolving power of the dataset. Re-located seismicity in a reliable new 3D tomographic model allows us to correlate the earthquake distribution with the main seismogenic structures present in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H., 1974. A new look at the statistical model identification. IEEE Trans Autom. Control, 6, 716–723.

    Article  Google Scholar 

  • Amanti M., Bontempo R., Cara P., Conte G., Di Bucci D., Lembo P., Pantaleone N.A. and Ventura R., 2002. Carta Geologica d’Italia Interattiva, 1:100000. SGN, SSN, ANAS, 3 CDROM.

  • Amato A. and Montone P. 1997. Present day stress field and active tectonics in southern peninsular Italy. Geophys. J. Int., 130, 519–534.

    Article  Google Scholar 

  • Amato A. and Selvaggi G., 1993. Aftershock location and P-wave velocity structure in the epicentral region of the 1980 Irpinia earthquake. Ann. Geofis., 36, 3–15.

    Google Scholar 

  • Amato A., Chiarabba C., Malagnini L. and Selvaggi G., 1992. Three-dimensional P-velocity structure in the region of the MS = 6.9 Irpinia, Italy, normal faulting earthquake. Phys. Earth Planet. Inter., 75, 111–119.

    Article  Google Scholar 

  • Anzidei M., Baldi P., Casula G., Galvani A., Mantovani E., Pesci A., Riguzzi F., Serpelloni E., 2001. Insights into present-day crustal motion in the central Mediterranean area from GPS surveys. Geophys. J. Int., 146, 98–110.

    Article  Google Scholar 

  • Bally A.W., Burbi L., Cooper C. and Ghelardoni R., 1986. Balanced sections and seismic reflection profiles across the Central Apennines. Mem. Soc. Geol. It., 35, 257–310.

    Google Scholar 

  • Beccaluva L., Brotzu P., Macciotta G., Morbidelli L., Serri G. and Traversa G., 1989. Cenozoic tecto-magmatic evolution and inferred mantle sources in the Sardo-Tyrrhenian Area. In: Boriani A., Bonafede M., Piccardo G.G. and Vai G.B. (Eds), The Lithosphere in Italy: Advances in Earth Science Research. Accademia Nazionale dei Lincei, Rome, Italy, 229–248.

    Google Scholar 

  • Benz H.M., Chouet B.A., Dawson P.B., Lahr J.C., Page R.A. and Hole J.A., 1996. Three dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. J. Geophys. Res., 101(B4), 8111–8128.

    Article  Google Scholar 

  • Bernard P. and Zollo A., 1989. The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal faulting. J. Geophys. Res., 94(B2), 1631–1647.

    Article  Google Scholar 

  • Boschi E., Console R., Di Maro R. and Murru M., 1998. Contributo alla conoscenza della sismicità nella Basilicata (online at http://www.consiglio.basilicata.it/basilicata_regione_notizie/laricerca_in_basilicata/05199804.pdf, in Italian).

  • Bunks C., Saleck F.M., Zaleski S. and Chavent G., 1995. Multi-scale seismic waveform inversion. Geophysics, 60, 1457–1473.

    Article  Google Scholar 

  • Casero P., Roure F., Endignoux L., Moretti I., Muller C., Sage L. and Vially R., 1988. Neogene geodynamic evolution of the southern Appennines. Mem. Soc. Geol. It., 41, 109–120.

    Google Scholar 

  • Cavanaugh J.E., 1997. Unifying the derivation for the Akaike and corrected Akaike Informatioin Criteria. Stat. Probab. Lett., 33, 201–208.

    Article  Google Scholar 

  • Chiarabba C. and Amato A., 1996. Crustal velocity structure of the Apennines (Italy) from P-wave travel time tomography. Ann. Geofis., 34, 1133–1148.

    Google Scholar 

  • Chiarabba C., Amato A. and Meghraoui M., 1996. Imaging seismogenic structures with local earthquake tomography. Phys. Chem. Earth, 21, 247–251.

    Article  Google Scholar 

  • Cimini G.B. and Amato A., 1993. P-wave teleseismic tomography: contribution to the delineation of the upper mantle structure of Italy. In: Boschi E., Mantovani E. and Morelli A. (Eds.), Recent Evolution and Seismicity of the Mediterranean Region. Kluwer Academic Publishers, Dordrecht, The Netherlands, 313–331.

    Google Scholar 

  • Civetta L., Orsi G., Scandone P. and Pece R., 1978. Eastwards migration of the Tuscan anatectic magmatism due to anticlokwise rotation of the Apennines. Nature, 276, 604–606.

    Article  Google Scholar 

  • De Gori P., Cimini G.B., Chiarabba C., De Natale G., Troise C. and Deschamps A., 2001. Teleseismic tomography of the Campanian volcanic area and surrounding Apenninic belt. J. Volcanol. Geotherm. Res., 109, 55–75.

    Article  Google Scholar 

  • De Matteis R., Vanorio T., Zollo A., Ciuffi S., Fiordalisi A. and Spinelli E., 2008. Threedimensional tomography and rock properties of the Larderello-Travale geothermal area, Italy. Phys. Earth Planet. Inter., 168, 37–48, doi: 10.1016/j.pepi.2008.04.019.

    Article  Google Scholar 

  • Di Stefano R., Chiarabba C., Lucente F. and Amato A., 1999. Crustal and uppermost mantle structure in Italy from the inversion of P-wave arrival times: geodynamic implications. Geophys. J. Int., 139, 483–498.

    Article  Google Scholar 

  • Evans J.R. and Zucca J.J., 1988. Active high resolution seismic tomography of compressional wave velocity and attenuation at Medicine Lake Volcano, Northern California Cascade Range. J. Geophys. Res., 93, 15016–15036.

    Article  Google Scholar 

  • Improta L., Iannaccone G., Capuano P., Zollo A. and Scandone P., 2000. Inferences on the upper crustal structure of Southern Apennines (Italy) from seismic refraction investigations and subsurface data. Tectonophysics, 317, 273–297.

    Article  Google Scholar 

  • Improta L., Bonagura M., Capuano P. and Iannaccone G., 2003. An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, MS = 6.9, Irpinia earthquake (Southern Italy). Tectonophysics, 361, 139–169.

    Article  Google Scholar 

  • Kissling E., Ellsworth W.L., Eberhart-Phillips D. and Kradolfer U., 1994. Initial reference model in local earthquake tomography. J. Geophys. Res., 99, 19635–19646.

    Article  Google Scholar 

  • Kissling E., 1988. Geotomography with local eartquakes data. Rev. Geophys., 26, 659–698.

    Article  Google Scholar 

  • Latorre D., Virieux J., Monfret T., Monteiller V., Vanorio T., Got J.L. and Lyon-Caen H., 1997. A new seismic tomography of Aigion area (Gulf of Corinth-Greece) from a 1991 dataset. Geophys. J. Int., 159, 1013–1031.

    Article  Google Scholar 

  • Lee W.H.K. and Lahr J.C., 1975. HYPO71 (Revised): A Computer Program for Determining Hypocenter, Magnitude and First Motion Pattern of Local Earthquakes. U.S. Geol. Surv. Open File Rep. 75-311, 113 pp.

  • Lees J.M. and Crosson R.S., 1989. Tomographic inversion for three dimensional velocity structure at Mount St Helens using earthquake data. J. Geophys. Res., 94, 5716–5728.

    Article  Google Scholar 

  • Lomax A., Virieux J., Volant P. and Thierry B.C., 2000. Probabilistic earthquake location in 3D and layered models. In: Thurber C.H. and Rabinowitz N. (Eds.), Advances in Seismic Event Location. Modern Approaches in Geophysics, 18, Kluwer Academic Publishers, Dordrecht, The Netherlands, 101–134.

    Google Scholar 

  • Lutter W.J. and Nowack R.L., 1990. Inversion of crustal structure using reflections from the PASSCAL Ouachita experiment. J. Geophys. Res., 95, 4633–4646

    Article  Google Scholar 

  • Maggi C., Frepoli A., Cimini G.B., Console R. and Chiappino M., 2009. Recent seismicity and crustal stress field in the Lucanian Apennines and surrounding areas (Southern Italy): Seismotectonic implications. Tectonophysics, 463, 130–144, doi: 10.1016/j.tecto.2008.09.032.

    Article  Google Scholar 

  • Malinverno A. and Ryan W.B.F., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5, 227–245.

    Article  Google Scholar 

  • Mariotti G. and Doglioni C., 2000. The dip of the foreland monocline in the Alps and Apennines. Earth Planet. Sci. Lett., 181, 191–202.

    Article  Google Scholar 

  • Menardi A. and Rea G., 2000. Deep structure of the Campania-Lucania arc (Southern Apennine, Italy). Tectonophysics, 324, 239–265.

    Article  Google Scholar 

  • Mostardini F. and Merlini S., 1986. Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. Ital., 35, 177–202 (in Italian).

    Google Scholar 

  • Nercessian A., Hirn A. and Tarantola A., 1984. Three dimensional seismic transmission prospecting of the Mont Dore volcano, France. Geophys. J. R. Astr. Soc., 76, 307–315.

    Google Scholar 

  • Nicolai C. and Gambini R., 2007. Structural architecture of the Adria platform and basin system. Boll. Soc. Geol. Ital., 7, 21–37.

    Google Scholar 

  • Nolet G., 2008. A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Paige C.C. and Saunders M.A., 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw., 8, 43–71.

    Article  Google Scholar 

  • Pantosti D. and Valensise G.R., 1990. Faulting mechanism and complexity of the November 23, 1980 Campania-Lucania earthquake, inferred from surface observations. J. Geophys. Res., 95(B10), 15319–15341.

    Article  Google Scholar 

  • Pasquale G., De Matteis R., Romeo A. and Maresca R., 2009. Earthquake focal mechanisms and stressinversion in the Irpinia Region (southern Italy). J. Seismol., 13, 107–124, doi: 10.1007/s10950-008-9119-x.

    Article  Google Scholar 

  • Patacca E. and Scandone P., 1987. Tectonic evolution of the outer margin of the Apennines and related foredeep system. In: Boriani A., Bonafede M., Piccardo G.G. and Vai G.B. (Eds), The Lithosphere in Italy: Advances in Earth Science Research. Accademia Nazionale dei Lincei, Rome, Italy, 139–142.

    Google Scholar 

  • Patacca E. and Scandone P., 1989. Post-Tortonian mountain building in the Apennines: the role of the passive sinking of a relic lithospheric slab. In: Boriani A., Bonafede M., Piccardo G.G. and Vai G.B. (Eds), The Lithosphere in Italy: Advances in Earth Science Research. Accademia Nazionale dei Lincei, Rome, Italy, 157–176.

    Google Scholar 

  • Patacca E., Sartori R. and Scandone P., 1990. Tyrrhenian Basin and Apenninic arcs: kinematic relations since Late Tortonian times. Mem. Soc. Geol. Ital., 45, 425–451.

    Google Scholar 

  • Paul A., Cattaneo M., Thouvenot F., Spallarossa D., Béthoux N. and Fréchet J., 2001. A threedimensional crustal velocity model of the southwestern Alps from local earthquakes tomography. J. Geophys. Res., 106(B9), 19367–19389.

    Article  Google Scholar 

  • Pavlis G.L. and Booker J.R., 1980. The mixed discrete-continuous inverse problem: Application to the simultaneous determination of earthquake hypocenters and velocity structure. J. Geophys. Res., 85(B9), 4801–4810.

    Article  Google Scholar 

  • Pingue F., De Natale G. and Briole P., 1993. Modeling of the 1980 Irpinia earthquake source: constraints from geodetic data. Ann. Geofis., 36, 27–40.

    Google Scholar 

  • Podvin P. and Lecomte I., 1991. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int., 105, 271–284.

    Article  Google Scholar 

  • Reutter K.J., 1981. A trench-forearc model for the Northern Apennines. Sedimentary basins of Mediterranean Margins. In: Wezel F.C. (Ed.), Sedimentary Basins of Mediterranean Margins. C.N.R. Italian Project of Oceanography, Tecnoprint, Bologna, 433–443.

    Google Scholar 

  • Royden L., Patacca E. and Scandone R., 1987. Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust-belt and foredeep-basin evolution. Geology, 15, 714–717.

    Article  Google Scholar 

  • Sallarès V., Charvis P., Flueh E.R., Bialas J., 2003. Seismic structure of Cocos and malpelo Volcanic Ridges and implications for hot spot-ridge interaction. J. Geophys. Res., 108(B12), 2564, doi: 10.1029/2003JB002431.

    Article  Google Scholar 

  • Scandone P., 1979. Origin of the Tyrrhenian Sea and Calabrian Arc. Boll. Soc. Geol. It., 98, 27–34.

    Google Scholar 

  • Scarpa R., Tronca F., Bianco F. and Del Pezzo E., 2002. High resolution velocity structure beneath Mount Vesuvius from seismic array data. Geophys. Res. Lett., 29, 2040.

    Article  Google Scholar 

  • Scarpa R., 1982. Travel-time residuals and three-dimensional velocity structure of Italy. Pure Appl. Geophys., 120, 583–606.

    Article  Google Scholar 

  • Scrocca D., Sciamanna S., Di Luzio E., Tozzi M., Nicolai C. and Gambini R., 2007. Structural setting along the CROP-04 deep seismic profile (Southern Apennines — Italy). Boll. Soc. Geol. Ital., 7, 283–296.

    Google Scholar 

  • Spencer C. and Gubbins D., 1980. Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophys. J. R. Astron. Soc., 63, 95–116.

    Google Scholar 

  • Tarantola A., 1987. Inverse Problem Theory: Methods For Data Fitting And Model Parameter Estimation. Elsevier, Amsterdam, The Netherlands, 613 pp.

    Google Scholar 

  • Thurber C.H., 1984. Seismic detection of the summit magma complex of Kilauea volcano, Hawaii. Science, 223, 165–167.

    Article  Google Scholar 

  • Thurber C.H., 1992. Hypocenter -velocity structure coupling in local earthquake tomography. Phys. Earth Planet. Inter., 75, 55–62.

    Article  Google Scholar 

  • Tiberti M.M., Orlando L., Di Bucci D., Bernabini M. and Parotto M., 2005. Regional gravity anomaly map and crustal model of the Central-Southern Apennines (Italy). J. Geodyn., 40, 73–91.

    Article  Google Scholar 

  • Tryggvason A. and Bergman B., 2006. A traveltime reciprocity discrepancy in the Podvin & Lecomte time3d finite difference algorithm. Geophys. J. Int., 165, 432–435.

    Article  Google Scholar 

  • Westaway R., 1993. Fault rupture geometry for the 1980 Irpinia earthquake: a working hypothesis. Ann. Geofis., 36, 51–69.

    Google Scholar 

  • Wu H. and Lees J.M., 1999. Three-dimensional P- and S-wave velocity structures of the Coso Geothermal Area, California, from microseismic travel time data. J. Geophys. Res., 104, 13217–13233.

    Article  Google Scholar 

  • Zhao D., Hasegawa A. and Horiuchi S., 1992. Tomographic imaging of P- and S-wave velocity structure beneath Northeastern Japan. J. Geophys. Res., 97, 19909–19928.

    Article  Google Scholar 

  • Zollo A., D’Auria L., De Matteis R., Herrero A., Virieux J. and Gasparini P., 2002. Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallow structure of Mt Vesuvius (Southern Italy). Geophys. J. Int., 151, 566–582.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella De Matteis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Matteis, R., Romeo, A., Pasquale, G. et al. 3D tomographic imaging of the southern Apennines (Italy): A statistical approach to estimate the model uncertainty and resolution. Stud Geophys Geod 54, 367–387 (2010). https://doi.org/10.1007/s11200-010-0022-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0022-x

Keywords

Navigation