Skip to main content
Log in

Isolation and Characterization of a Glutaredoxin Gene from Panax ginseng C. A. Meyer

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The antioxidant activities of Panax ginseng have long been known as among the important pharmacological properties of this plant. Although one of the most documented function of glutaredoxin (Grx) in plants is their involvement in the oxidative stress response, there are no reports on Grx in ginseng plants. Therefore, this study was undertaken to assess whether Grx is present in P. ginseng and to characterize the Grx gene coding for these antioxidant information. A cDNA clone containing a Grx gene, designated PgGrx, was isolated from leaves of P. ginseng. The cDNA clone was 493 nucleotides in length and had an open reading frame of 321 bp with a deduced amino acid of 106 residues, possessing a C-S-Y-C active site, which belongs to the Grx subgroup. The PgGrx shows high homology to other Grxs of higher plants. Quantitative reverse transcriptase-polymerase chain reaction has been used to study expression of PgGrx following various abiotic stresses. Findings have revealed that PgGrx is involved in the antioxidative process triggered by environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSl BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.

    Article  PubMed  CAS  Google Scholar 

  • Aslund F, Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 1999;96:751–3.

    Article  PubMed  CAS  Google Scholar 

  • Bushweller JH, Billeter M, Holmgren A, Wüthrich K. The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin (C14S) and glutathione. J Mol Biol 1994;235:1585–97.

    Article  PubMed  CAS  Google Scholar 

  • Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin dependent reduction systems in Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 2000;54:439–61.

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Hirschi KD. Cloning and characterization of CXIP1, a novel PICOT domain-containing Arabidopsis protein that associates with CAX1. J Biol Chem 2003;278:6503–9.

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD. AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 2006;281:26280–8.

    Article  PubMed  CAS  Google Scholar 

  • Chrestensen CA, Starke DW, Mieyal JJ. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides and initiates apoptosis. J Biol Chem 2000;275:26556–65.

    Article  PubMed  CAS  Google Scholar 

  • Cotgreave IA, Gerdes RG. Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation. Biochem Biophys Res Commun 1998;242:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Davies KJA. Protein damage and degradation by oxygen radicals. J Biol Chem 1987;262:9895–901.

    PubMed  CAS  Google Scholar 

  • Felsenstein J. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–91.

    Article  Google Scholar 

  • Feng Y, zhong N, Rouhier N, Hase T, Kusunoki M, Jacquot J-P, Jin Ch, Xia B. Structure insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Biochem 2006;45:7998–8008.

    Article  CAS  Google Scholar 

  • Fernandes AP, Holmgren A. Glutaredoxins: glutathione dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 2004;6:63–74.

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants. Physiol Plant 1994;92:696–717.

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: John M, Walker, editor. The proteomics protocols handbook. Totowa, NJ: Humana Press; 2005. p. 571–607.

    Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP. Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 2003;555:443–8.

    Article  PubMed  CAS  Google Scholar 

  • Geourjon C, Deléage G. SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Cabios 1995;11:681–4.

    PubMed  CAS  Google Scholar 

  • Grant CM. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and responses to stress conditions. Mol Microbiol 2001;39:533–41.

    Article  PubMed  CAS  Google Scholar 

  • Gravina SA, Mieyal JJ. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 1993;32(13):3368–76.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990;186:1–85.

    Article  PubMed  CAS  Google Scholar 

  • He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 2008;283(2):774–83.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci USA 1976;73:2275–9.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A. Thioredoxin and glutaredoxin systems. J Bio Chem 1989;264:13963–6.

    CAS  Google Scholar 

  • Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 2005;33(6):1375–7.

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 2002;215:1022–30.

    Article  PubMed  CAS  Google Scholar 

  • Jouve L, Hoffmann L, Hausman JF. Polyamine, carbohydrate, and proline content changes during salt stress exposure of Aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant boil 2004;6:74–80.

    Article  CAS  Google Scholar 

  • Knight H, Knight MR. Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 2001;6:262–7.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 2004;5:150–63.

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157:105–32.

    Article  PubMed  CAS  Google Scholar 

  • Lee KO, Jang HH, Jung BG, Chi YH, Lee JY, Choi YO, et al. Rice 1Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Lett 2000;486:103–6.

    Article  PubMed  CAS  Google Scholar 

  • Lee KO, Lee JR, Yoo JY, Jang HH, Moon JC, Jung BG, et al. GSH-dependent peroxidase activity of the rice (Oryza sativa) glutaredoxin, a thioltransferase. Biochem Biophys Res Commun 2002;296:1152–6.

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, Hell R. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 2005;86:435–57.

    Article  PubMed  CAS  Google Scholar 

  • Michelet L, Zaffagnini M, Marchand C, Collin V, Decottiqnies P, Tsan P, et al. Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci USA 2005;102:16478–83.

    Article  PubMed  CAS  Google Scholar 

  • Minakuchi K, Yahushita T, Masumura T, Ichihara K, Tanaka K. Cloning and sequence analysis of a cDNA encoding rice glutaredoxin. FEBS Lett 1994;337:157–60.

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends in Plant Sciences 2004;9:490–8.

    Article  CAS  Google Scholar 

  • Morris PC, Kumar A, Bowles DJ, Cuming AC. Osmotic stress and abscisic acid regulate the expression of the Em gene of wheat. Eur J Biochem 1990;190:625–30.

    Article  PubMed  CAS  Google Scholar 

  • Muhlenhoff U, Gerber J, Richhardt N, Lill R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J 2003;22:4815–25.

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 1962;15:473–97.

    Article  CAS  Google Scholar 

  • Rietsch A, Beckwith J. The genetics of disulfide bond metabolism. Annu Rev Genet 1998;32:163–84.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Manzaneque MT, Ros J, Cabiscol E, Sorbías A, Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 1999;19:8180–90.

    PubMed  Google Scholar 

  • Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 2002;13:1109–21.

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, et al. Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 2001;127:1299–309.

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP. Exploring the active site of plant glutaredoxin by site-directed mutagenesis. FEBS Lett 2002;511:145–9.

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP. Plant glutaredoxins: still mysterious reducing systems. Cell Mol Life Sci 2004;61:1266–77.

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Couturier J, Jacquot JP. Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 2006;57:1685–96.

    Article  PubMed  CAS  Google Scholar 

  • Sagemark J, Elgan TH, Bürglin TR, Johansson C, Holmgren A, Berndt KD. Redox properties and evolution of human glutaredoxins. Proteins 2007;68:879–92.

    Article  PubMed  CAS  Google Scholar 

  • Song JJ, Rhee JG, Suntharalingam M, Walsh SA, Spitz DR, Lee YJ. Role of glutaredoxin in metabolic oxidative stress: glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem 2002;277:46566–75.

    Article  PubMed  CAS  Google Scholar 

  • Szederkenyi J, Komor E, Schobert C. Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudates protein from Ricinus communis L., and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes. Planta 1997;202:349–56.

    Article  PubMed  CAS  Google Scholar 

  • Terada T, Oshida T, Nishimura M, Maeda H, Hara T, Hosomi S, et al. Study on human erythrocyte thioltransferase: comparative characterization with bovine enzyme and its physiological role under oxidative stress. J Biochem 1992;111:688–92.

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;24:4876–82.

    Article  Google Scholar 

  • Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K. A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiology 2005;137:317–27.

    Article  PubMed  CAS  Google Scholar 

  • Wells WW, Xu DP, Yang Y, Rocque PA. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 1990;265:15361–4.

    PubMed  CAS  Google Scholar 

  • White CL, Weisberg AS, Moss B. A glutaredoxin, encoded by the G4L gene of vaccinia virus, is essential for virion morphogenesis. J Virol 2000;74:9175–83.

    Article  PubMed  CAS  Google Scholar 

  • Yoo KY, Park DS, Tae GS. Molecular cloning and characterization of the psbL and psbJ genes for photosystem II from Panax ginseng. J Plant Biol 2004;47:203–9.

    Article  CAS  Google Scholar 

  • Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 1998;279:1718–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R01-2006-000-11178-0), by GRCMVP for Technology Development Program of Agriculture and Forestry, Ministry of Agriculture and forestry, Republic of Korea, and scholarship by Kyung-Hee University graduate school research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Shim, JS., Krishna, P.R. et al. Isolation and Characterization of a Glutaredoxin Gene from Panax ginseng C. A. Meyer. Plant Mol Biol Rep 26, 335–349 (2008). https://doi.org/10.1007/s11105-008-0053-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0053-4

Keywords

Navigation