Skip to main content
Log in

Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, non-linear free vibration of micro-plates based on strain gradient elasticity theory is investigated. A general form of Mindlin’s first-strain gradient elasticity theory is employed to obtain a general Kirchhoff micro-plate formulation. The von Karman strain tensor is used to capture the geometric non-linearity. The governing equations of motion and boundary conditions are obtained in a variational framework. The Homotopy analysis method is employed to obtain an accurate analytical expression for the non-linear natural frequency of vibration. For some specific values of the gradient-based material parameters, the general plate formulation can be reduced to those based on some special forms of strain gradient elasticity theory. Accordingly, three different micro-plate formulations are introduced, which are based on three special strain gradient elasticity theories. It is found that both geometric non-linearity and size effect increase the natural frequency of vibration. In a micro-plate having a thickness comparable with the material length scale parameter, the strain gradient effect on increasing the non-linear natural frequency is higher than that of the geometric non-linearity. By increasing the plate thickness, the strain gradient effect decreases or even diminishes. In this case, geometric non-linearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for micro-plates with some specific thickness to length scale parameter ratios, both geometric non-linearity and size effect have significant role on increasing the frequency of non-linear vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faris, W., Nayfeh, A.H.: Mechanical response of a capacitive microsensor under thermal load. Commun. Nonlinear Sci. Numer. Simul. 12, 776–783 (2007)

    Article  MATH  Google Scholar 

  2. Zhao, X., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microplates. J. Micromech. Microeng. 14, 900–906 (2004)

    Article  Google Scholar 

  3. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Metall. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  4. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  5. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  6. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  7. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  9. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)

    Article  MATH  Google Scholar 

  10. Yang, F., Chong, A.C.M., Lam, D.C.C.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  11. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rajabi, F., Ramezani, S.: A non-linear microbeam model based on strain gradient elasticity theory with surface energy. Arch. Appl. Mech. 82, 363–376 (2012)

    Article  Google Scholar 

  13. Ramezani, S.: A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Non-Linear Mech. 47, 863–873 (2012)

    Article  Google Scholar 

  14. Lazopoulos, K.A.: On the gradient strain elasticity theory of plates. Eur. J. Mech. A, Solids 23, 843–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papargyri-Beskou, S., Beskos, D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  16. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  17. Asghari, M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lazopoulos, K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36, 777–783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Papargyri-Beskou, S., Giannakopoulos, A.E., Beskos, D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)

    Article  MATH  Google Scholar 

  20. Vavva, M.G., Protopappas, V.C., Gergidis, L.N., Charalambopoulos, A., Fotiadis, D.I., Polyzos, D.: Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone. J. Acoust. Soc. Am. 125, 3414–3427 (2009)

    Article  Google Scholar 

  21. Wang, B., Zhou, S., Zhao, J., Chen, X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech. A, Solids 30, 517–524 (2011)

    Article  MATH  Google Scholar 

  22. Ramezani, S.: A shear deformation micro-plate model based on the most general form of strain gradient elasticity. Int. J. Mech. Sci. 57, 34–42 (2012). doi:10.1016/j.ijmecsci.2012.01.012

    Article  Google Scholar 

  23. Wah, T.: Large amplitude flexural vibration of rectangular plates. Int. J. Mech. Sci. 5, 425–438 (1963)

    Article  Google Scholar 

  24. Anlas, G., Elbeyli, O.: Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation in the presence of a one-to-one internal resonance. Nonlinear Dyn. 30, 1–28 (2002)

    Article  MATH  Google Scholar 

  25. Yu, W., Chen, F.: Global bifurcations of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation. Nonlinear Dyn. 59, 129–141 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, Theory and Analysis. CRC Press, Boca Raton (2004)

    Google Scholar 

  27. Chien, R.-D., Chen, C.-S.: Nonlinear vibration of laminated plates on a nonlinear elastic foundation. Compos. Struct. 70, 90–99 (2005)

    Article  Google Scholar 

  28. Chen, C.-S., Tan, A.-S.: Imperfection sensitivity in the nonlinear vibration of initially stresses functionally graded plates. Compos. Struct. 78, 529–536 (2007)

    Article  Google Scholar 

  29. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  30. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  31. Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  32. Smyshlyaev, V.P., Fleck, N.A.: Role of strain gradients in the grain size effect for polycrystals. J. Mech. Phys. Solids 44, 465–495 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Altan, S.B., Aifantis, E.C.: On the structure of the mode-III crack-tip in gradient elasticity. Scr. Mater. 26, 319–324 (1992)

    Article  Google Scholar 

  34. Amanatidou, E., Aravas, N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Eng. 191, 1723–1751 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shojaa Ramezani.

Appendix

Appendix

The ϒ I (I=1,2,…,9) parameters defined in Eqs. (84)–(86) are as follows:

(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramezani, S. Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn 73, 1399–1421 (2013). https://doi.org/10.1007/s11071-013-0872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0872-1

Keywords

Navigation