Skip to main content
Log in

T–S fuzzy control design for a class of nonlinear networked control systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to controlling a class of nonlinear systems over a communication network in the presence of packet transmission delays, packet losses, quantization errors, and sampling-related phenomena. Specifically, based on the Takagi–Sugeno (T–S) fuzzy approach, this paper presents a way of designing a quantized controller that allows all the states of nonlinear NCSs to converge exponentially to a bounded ellipsoid. In particular, this paper provides a method capable of exploiting fully the time-varying delay term d(t), induced by Jensen inequality, for nonlinear NCSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiu, C.-S.: T–S fuzzy maximum power point tracking control of solar power generation systems. IEEE Trans. Energy Convers. 25(4), 1123–1132 (2010)

    Article  Google Scholar 

  2. Choi, H.H., Jung, J.-W.: Fuzzy speed control with an acceleration observer for a permanent magnet synchronous motor. Nonlinear Dyn. 67, 1717–1727 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. El Ghaoui, L., Oustry, F., Ait-Rami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Lausanne (2003)

    Book  MATH  Google Scholar 

  5. Hou, Y.-Y.: Reliable stabilization of networked control systems with actuator faults. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0671-0

    Google Scholar 

  6. Jia, X., Zhang, D., Zheng, L., Zheng, N.: Modeling and stabilization for a class of nonlinear networked control systems: a T–S fuzzy approach. Prog. Nat. Sci. 18(8), 1031–1037 (2008)

    Article  MathSciNet  Google Scholar 

  7. Jiang, X., Han, Q.-L.: On designing fuzzy controllers for a class of nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 16(4), 1050–1060 (2008)

    Article  Google Scholar 

  8. Kim, D.W., Lee, H.J.: Comments on “T–S fuzzy-model-based robust \({\mathcal{H}}_{\infty}\) design for networked control systems with uncertainties”. IEEE Trans. Ind. Inform. 5(4), 507 (2009)

    Google Scholar 

  9. Kim, S.H., Park, P.: Networked-based robust \({\mathcal{H}}_{\infty}\) control design using multiple levels of network traffic. Automatica 45, 764–770 (2009)

    Article  MATH  Google Scholar 

  10. Kim, S.H., Park, P.: \({\mathcal{H}}_{\infty}\) state-feedback-control design for discrete-time fuzzy systems using relaxation technique for parameter LMI. IEEE Trans. Fuzzy Syst. 18(5), 985–993 (2010)

    Article  Google Scholar 

  11. Kim, S.H., Park, P., Jeong, C.: Robust \({\mathcal{H}}_{\infty}\) stabilisation of networked control systems with packet analyser. IET Control Theory Appl. 4(9), 1828–1837 (2010)

    Article  Google Scholar 

  12. Lam, H.K.: Sampled-data fuzzy-model-based control systems: stability analysis with consideration of analogue-to-digital converter and digital-to-analogue converter. IET Control Theory Appl. 4(7), 1131–1144 (2010)

    Article  MathSciNet  Google Scholar 

  13. Lee, H.J., Park, J.B., Joo, Y.H.: Robust control for uncertain Takagi–Sugeno fuzzy systems with time-varying input delay. J. Dyn. Syst. Meas. Control 127, 302–306 (2005)

    Article  MATH  Google Scholar 

  14. Li, L., Liu, X.: New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays. Inf. Syst. 179, 1134–1148 (2009)

    MATH  Google Scholar 

  15. Li, J., Wang, H.O., Niemann, D., et al.: Dynamic parallel distributed compensation for Takagi–Sugeno fuzzy systems: an LMI approach. Inf. Syst. 123(3–4), 201–221 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Lian, K.-Y., Chiang, C.-H., Tu, H.-W.: LMI-based sensorless control of permanent-magnetic synchronous motors. IEEE Trans. Ind. Electron. 54(5), 2769–2779 (2007)

    Article  Google Scholar 

  17. Lien, C.H., Yu, K.W.: Robust control for Takagi–Sugeno fuzzy systems with time-varying state and input delays. Chaos Solitons Fractals 35(5), 1003–1008 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, W., Wang, Z., Zhang, W.: Controlled synchronization of discrete-time chaotic systems under communication constraints. Nonlinear Dyn. 69, 223–230 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Park, P., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Petres, Z., Baranyi, P., Korondi, P., Hashimoto, H.: Trajectory tracking by TP model transformation: case study of a benchmark problem. IEEE Trans. Ind. Electron. 54(3), 1654–1663 (2007)

    Article  Google Scholar 

  21. Qiu, J., Feng, G., Gao, H.: Fuzzy-model-based piecewise \({\mathcal{H}}_{\infty}\) static-output-feedback controller design for networked nonlinear systems. IEEE Trans. Fuzzy Syst. 18(5), 919–934 (2010)

    Article  Google Scholar 

  22. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)

    Article  Google Scholar 

  23. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  24. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)

    Article  Google Scholar 

  25. Teixeira, M.C.M., Żak, S.H.: Stabilizing control design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Autom. Control 7(2), 133–142 (1999)

    Google Scholar 

  26. Tian, E., Yue, D., Yang, T.C., Gu, Z., Lu, G.: T–S fuzzy model-based robust stabilization for networked control systems with probabilistic sensor and actuator failure. IEEE Trans. Fuzzy Syst. 19(3), 553–561 (2011)

    Article  Google Scholar 

  27. Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)

    Article  Google Scholar 

  28. Wang, G., Li, L., Wu, B.: Robust stability of nonlinear model-based networked control systems with time-varying transmission times. Nonlinear Dyn. 69, 1351–1363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wen, S., Zeng, Z., Huang, T.: Robust \({\mathcal{H}}_{\infty}\) output tracking control for fuzzy networked systems with stochastic sampling and multiplicative noise. Nonlinear Dyn. 70, 1061–1077 (2012)

    Article  MathSciNet  Google Scholar 

  30. Xie, G., Wang, L.: Stabilization of NCSs: asynchronous partial transfer approach. In: American Control Conference, Portland, OR, USA (2005)

    Google Scholar 

  31. Xiu, Z.H., Ren, G.: Stability analysis and systematic design of Takagi–Sugeno fuzzy control systems. Fuzzy Sets Syst. 151(1), 119–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yun, S.W., Choi, Y.J., Park, P.-G.: Dynamic output-feedback guaranteed cost control for linear systems with uniform input quantization. Nonlinear Dyn. 62, 95–104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, H., Yang, J., Su, C.-Y.: T–S fuzzy-model-based robust \({\mathcal{H}}_{\infty}\) design for networked control systems with uncertainties. IEEE Trans. Ind. Inform. 3(4), 289–301 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012013687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H. T–S fuzzy control design for a class of nonlinear networked control systems. Nonlinear Dyn 73, 17–27 (2013). https://doi.org/10.1007/s11071-013-0763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0763-5

Keywords

Navigation