Skip to main content
Log in

Dynamical behavior of a class of prey-predator system with impulsive state feedback control and Beddington–DeAngelis functional response

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies systematically a Bedd-ington–DeAngelis prey–predator system with harvesting and impulsive state feedback control. Conditions for existence and stability of predator-free periodic solution are obtained. When the predator-free periodic solution loses its stability, the existence and stability of nontrivial period solution are also established. Furthermore, computer simulations show that this impulsive system displays a series of complex phenomena, including period-doubling bifurcation and cascade, period window, and chaotic bands. Through numerical simulation, it is also observed that capture capability can influence the amount of predator released and the interval of the stability for nontrivial period-1 solution. Moreover, the superiority of impulsive state feedback control strategy is also exhibited over the impulsive fixed-time control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kar, T.K., Pahari, U.K.: Modeling and analysis of a prey-predator system with stage-structure and harvesting. Nonlinear Anal., Real World Appl. 8(2), 601–609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lenzini, P., Rebaza, J.: Nonconstant preydator harvesting on ratio-dependent predator-prey models. Appl. Math. Sci. 4(16), 791–803 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Xiao, D.M., Li, W.X., Han, M.A.: Dynamics in ratio-dependent predator-prey model with predator harvesting. J. Math. Anal. Appl. 324(1), 14–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, Z.J., Tan, R.H.: Impulsive harvesting and stocking in a Monod–Haldane functional response predator-prey system. Chaos Solitons Fractals 34(2), 454–464 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vayenas, D.V., Pavlou, S.: Chaotic dynamics of a food web in a chemostat. Math. Biosci. 162(1–2), 69–84 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, F.Y., Hao, C.P., Chen, L.S.: Bifurcation and chaos in a Monod–Haldene type food chain chemostat with pulsed input and washout. Chaos Solitons Fractals 32(1), 181–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geritz, S.A.H., Kisdi, É., Yan, P.: Evolutionary branching and long-term coexistence of cycling predators: critical function analysis. Theor. Popul. Biol. 71(4), 424–435 (2007)

    Article  MATH  Google Scholar 

  8. Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator-prey model. Theor. Popul. Biol. 70(3), 273–288 (2006)

    Article  MATH  Google Scholar 

  9. Huang, Y.J., Chen, F.D., Zhong, L.: Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182(1), 672–683 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, G.R., Lu, Q.S.: Impulsive state feedback control of a predator-prey model. J. Comput. Appl. Math. 200(1), 193–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, G.R., Lu, Q.S., Qian, L.N.: Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos Solitons Fractals 31(2), 448–461 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiao, J.J., Meng, X.Z., Chen, L.S.: A stage-structured Holling mass defence predator-prey model with impulsive perturbations on predators. Appl. Math. Comput. 189(2), 1448–1458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, R., Chaplain, M.A.J., Davidson, F.A.: Periodic solutions for a predator-prey model with Holling-type functional response and time delays. Appl. Math. Comput. 161(2), 637–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kooij, R.E., Zegeling, A.: A predator-prey model with Iliev’s functional response. J. Math. Anal. Appl. 198(2), 473–489 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sugie, J.: Two-parameter bifurcation in a predator-prey system of Ivlev type. J. Math. Anal. Appl. 217(2), 349–371 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cantrell, R.S., Cosner, C.: On the dynamics of predator-prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257(1), 206–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, Z.H., Chi, X.B., Chen, L.S.: Impulsive control strategies in biological control of pesticide. Theor. Popul. Biol. 64(1), 39–47 (2003)

    Article  MATH  Google Scholar 

  18. Simeonov, P.E., Bainov, D.D.: Orbital stability of periodic solutions of autonomous systems with impulse effect. Int. J. Syst. Sci. 19, 2562–2585 (1988)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (60974004) and Liaoning Provincial Foundation of Science and Technology (20082023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingling Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, Q. & Zhang, X. Dynamical behavior of a class of prey-predator system with impulsive state feedback control and Beddington–DeAngelis functional response. Nonlinear Dyn 70, 1511–1522 (2012). https://doi.org/10.1007/s11071-012-0551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0551-7

Keywords

Navigation