Skip to main content
Log in

Active flutter suppression control law design method based on balanced proper orthogonal decomposition reduced order model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Active control for nonlinear aeroelastic structures is an attractive innovative technology. The design of classic active flutter controllers has often been based on low-fidelity and low-accuracy linear aerodynamic models. Multi-physics high-fidelity reduced order model (ROM) was used to design active control laws. In order to provide a lower-order model for controllers design, a balanced proper orthogonal decomposition ROM (POD-BT/ROM) was investigated. A state-space aeroservoelastic model and the active flutter suppression control law design method based on POD-BT/ROM were proposed. The effectiveness of the proposed method was then demonstrated by NACA 0012 airfoil, AGARD 445.6 wing and the Goland wing+ aeroelastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mukhopadhyay, V.: Historical perspective on analysis and control of aeroelastic responses. J. Guid. Control Dyn. 26(5), 673–684 (2003)

    Article  Google Scholar 

  2. Allen, C.B., Fenwick, C.L., Taylor, N.V., Djayapertapa, L.: Investigation of flutter suppression by active control. AIAA 2003-3510 (2003)

  3. Zhang, R., Singh, S.N.: Adaptive output feedback control of an aeroelastic system with unstructured uncertainties. J. Guid. Control Dyn. 24(3), 502–509 (2001)

    Article  Google Scholar 

  4. Platanitis, G., Strganac, T.W.: Control of a nonlinear wing section using leading- and trailing-edge surfaces. J. Guid. Control Dyn. 27(1), 52–58 (2004)

    Article  Google Scholar 

  5. Zebb, P., Ben, C., Con, D., Strganac, T.W.: Linear-parameter-varying control of an improved three-degree-of-freedom aeroelastic model. J. Guid. Control Dyn. 33(2), 615–618 (2010)

    Article  Google Scholar 

  6. Chen, G., Sun, J., Zuo, Y., Li, Y.M.: Linear parameter varying control for active flutter suppression based on adaptive reduced order model. AIAA 2011-1773 (2011)

  7. ZONA Technology, Inc.: ZAERO User’s Manual. Ver. 7.3. Scottsdale, AZ, October 2005

  8. Boldelli, D.H., Chen, P.C., Panza, J., Adams, J.: Unified rational function approximation formulation for aeroelastic and flight dynamics analyses. AIAA paper 2006-2025 (2006)

  9. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1), 51–117 (2004)

    Article  Google Scholar 

  10. Dowell, E.H.: Some recent advances in nonlinear aeroelasticity: fluid-structure interaction in the 21st century. AIAA-2010-3137 (2010)

  11. Badcock, K.J., Timme, S., Marques, S., Khodaparast, H., Prandina, M., Mottershead, J.E., Swift, A., Da Ronch, A., Woodgate, M.A.: Transonic aeroelastic simulation for instability searches and uncertainty analysis. Prog. Aerosp. Sci. 47, 392–423 (2011)

    Article  Google Scholar 

  12. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1), 51–117 (2004)

    Article  Google Scholar 

  13. Silva, W.A., Bartels, R.E.: Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code. J. Fluids Struct. 19(6), 729–745 (2004)

    Article  Google Scholar 

  14. Cowan, T.J., Andrew, S.A.J., Gupta, K.K.: Accelerating computational fluid dynamics based aeroelastic predictions using system identification. J. Aircr. 38(1), 81–87 (2001)

    Article  Google Scholar 

  15. Woodgate, M.A., Badcock, K.J.: Fast prediction of transonic aeroelastic stability and limit cycles. AIAA J. 45(6), 1370–1381 (2007)

    Article  Google Scholar 

  16. Chen, G., Li, Y.M., Yan, G.R.: A nonlinear POD reduced order model for limit cycle oscillation prediction. Sci. China Ser. G 53(6), 1325–1332 (2010)

    Article  Google Scholar 

  17. Romannowski, M.C., Dowell, E.H.: Reduced order unsteady aerodynamic and aeroelastic models using Karhunen-Loéve eigenmodes. In: 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, pp. 7–13 (1996)

    Google Scholar 

  18. Hall, K.C., Thomas, J.P., Dowell, E.H.: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J. 38(2), 1853–1862 (2000)

    Article  Google Scholar 

  19. Thomas, J.P., Dowell, E.H., Hall, K.C.: Three-dimensional transonic aeroelasticity using proper orthogonal decomposition based reduced order models. J. Aircr. 40(3), 544–551 (2003)

    Article  Google Scholar 

  20. Thomas, J.P., Dowell, E.H., Hall, K.C.: Virtual aeroelastic flight testing for the F-16 fighter with stores. AIAA-2007-1640 (2007)

  21. Henshawa, M.J., Badcock, K.J., Vio, G.A.: Non-linear aeroelastic prediction for aircraft applications. Prog. Aerosp. Sci. 434(4–6), 65–137 (2007)

    Article  Google Scholar 

  22. Falkiewicz, N.J., Cesnik, C.E.S.: Proper orthogonal decomposition for reduced-order thermal solution in hypersonic aerothermoelastic simulations. AIAA-2010-2798 (2010)

  23. Lieu, T., Farhat, C.: Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J. 45(6), 1244–1257 (2007)

    Article  Google Scholar 

  24. Woodgate, M.A., Badcock, K.J.: Implicit harmonic balance solver for transonic flow with forced motions. AIAA J. 47(4), 893–901 (2009)

    Article  Google Scholar 

  25. Thomas, J.P., Dowell, E.H., Hall, K.C.: Using automatic differentiation to create a nonlinear reduced order model aeroelastic solver. AIAA J. 48(1), 19–24 (2010)

    Article  Google Scholar 

  26. Chen, G., Li, Y., Yan, G.-R.: Limit cycle oscillation prediction and control design method for aeroelastic system based on new nonlinear reduced order model. Int. J. Comput. Methods 8(1), 77–90 (2011)

    Article  MathSciNet  Google Scholar 

  27. Chen, G., Li, Y.M., Yan, G.R.: A fast aeroelastic response prediction method based on proper orthogonal decomposition reduced order. Model. J. Astronaut. 30(5), 1765–1769 (2009) (In Chinese)

    Google Scholar 

  28. Farhat, C., Amsallem, D.: Recent advances in reduced-order modeling and application to nonlinear computational aeroelasticity. AIAA-2008-562 (2008)

  29. Beran, P.S., Lucia, D.J., Pettit, C.L.: Reduced-order modelling of limit-cycle oscillation for aeroelastic systems. J. Fluids Struct. 19, 575–590 (2004)

    Article  Google Scholar 

  30. Pettit, C.L., Beran, P.S.: Application of proper orthogonal decomposition to the discrete Euler equations. Int. J. Numer. Methods Eng. 55(4), 479–497 (2002)

    Article  MATH  Google Scholar 

  31. Danowsky, B.P., Peter, M.T., Farhat, C., Lieu, T., Harris, C., Lechniak, J.: Incorporation of feedback control into a high-fidelity aeroservoelastic fighter aircraft model. J. Aircr. 47(4), 1274–1282 (2010)

    Article  Google Scholar 

  32. Hu, P., Bodson, M., Brenner, M.: Towards real-time simulation of aeroservoelastic dynamics for a flight vehicle from subsonic to hypersonic regime. AIAA-2008-6375 (2008)

  33. Falkiewicz, N.J., Cesnik, C.E.S., Crowell, A.R., McNamara, J.J.: Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation. AIAA J. 49(8), 1625–1646 (2011)

    Article  Google Scholar 

  34. Marzoeea, P., Silva, W.A., Libreseu, L.: Open/closed-loop nonlinear aeroelasticity for airfoils via Volterra series approach. AIAA J. 42(4), 673 (2004)

    Article  Google Scholar 

  35. Zhang, Z.J., Min, X., Chen, S.L.: Active flutter control of transonic flapped wing based on CFD/CSD coupling. In: 7th International Conference on System Simulation and Scientific Computing (ICSC’2008), Beijing, China, p. 430 (2008)

    Chapter  Google Scholar 

  36. Chen, G., Li, Y.M., Yan, G.R.: Active control stability/augmentation system design based on reduced order model. Chin. J. Aeronaut. 23(6), 637–644 (2010)

    Google Scholar 

  37. Moore, B.C.: Principal component analysis in linear system: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–31 (1981)

    Article  MATH  Google Scholar 

  38. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  39. Eastep, F.E., Olsen, J.J.: Transonic flutter analysis of a rectangular wing with conventional airfoil sections. AIAA J. 18(10), 1159–1164 (1980)

    Article  Google Scholar 

  40. Syrmos, V.L., Abdallah, C.T., Dorato, P., Grigoriadis, K.: Static output feedback: a survey. Automatica 33(2), 125–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Patil, M.J., Hodges, D.H.: Output feedback control of the nonlinear aeroelastic response of a slender wing. J. Guid. Control Dyn. 25(2), 302–308 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the National Natural Science Foundation of China (10902082, 91016008), New Faculty Research Foundation of XJTU, and the Funds for the Central Universities (xjj20100126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Jian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gang, C., Jian, S. & Yueming, L. Active flutter suppression control law design method based on balanced proper orthogonal decomposition reduced order model. Nonlinear Dyn 70, 1–12 (2012). https://doi.org/10.1007/s11071-012-0392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0392-4

Keywords

Navigation