Skip to main content
Log in

Automated design of fractional PI QFT controller using interval constraint satisfaction technique (ICST)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a fractional-order proportional-integral (FOPI) controller is proposed and designed for a class of nonlinear integer-order (IO) systems. For fair comparison, the proposed FOPI and the traditional integer-order PID (IOPID) controllers are designed following the same set of imposed tuning constraints, which can guarantee the desired control performance and the robustness of the designed controllers to the loop gain variations. This proposed design scheme offers a practical and systematic way of controller design for the nonlinear IO plant. We also propose a new and efficient method for automated synthesis of a fixed structure Quantitative Feedback Theory (QFT) FO controller. This is achieved by solving QFT quadratic inequalities of robust stability and performance specifications. The controller synthesis problem is posed as interval constraint satisfying problem (ICSP) and solved with interval constraint solver. The main feature of this method is that it guarantees to find all feasible controllers of given structure in the specified search domain. The designed FOPI and the traditional IOPID controllers are tested on the experimental setup designed by Educational Control Product (ECP) Magnetic Levitation Setup ECP 730. From the experimental results presented, it is observed that the designed FO controllers work more efficiently, with improved performance compared with the designed stabilizing IOPID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Horowitz, I.M.: Quantitative Feedback Design Theory (QFT). QFT Publications, Boulder (1993)

    Google Scholar 

  2. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Petras, I., Dorcak, L., Kostial, I.: Control quality enhancement by fractional order controllers. ACTA Montan. Slovaca 3(2), 143–148 (1998)

    Google Scholar 

  6. Chengbin, Ma, Hori, Y.: Backlash vibration suppression in torsional system based on the fractional order Q-filter of disturbance observer. In: The 8th IEEE International Workshop on Advanced Motion Control, Kamasai, Japan, pp. 577–582 (2004)

    Chapter  Google Scholar 

  7. Fonseca, F.N.M., Machado, J.A.: Fractional-order hybrid control of robotic manipulators. In: Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, pp. 393–398 (2003)

    Google Scholar 

  8. Bode, H.W.: Network Analysis and Feedback Design. Van Nostrand, New York (1945)

    Google Scholar 

  9. Manabe, S.: The non-integer integral and its application to control systems. Electrotech. J. Jpn. 6(3), 83–87 (1961)

    Google Scholar 

  10. Oustaloup, A.: La Commande CRONE: Commande Robuste d’Ordre Non Entier. Hermes, Paris (1991)

    MATH  Google Scholar 

  11. Podlubny, I.: Fractional-order systems and PI α D β controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Petras, I.: The fractional order controllers: methods for their synthesis and application. J. Electr. Eng. 50(9–10), 284–288 (1999)

    Google Scholar 

  13. Vinagre, B.M., Podlubny, I., Dorcak, L., Feliu, V.: On fractional PID controllers: a frequency domain approach. In: Proceedings of IFAC Workshop on Digital Control—PID’00, Terrassa, Spain (2000)

    Google Scholar 

  14. Chengbin, Ma, Hori, Y.: The application of fractional order PID controller for Robust two-inertia speed control. In: Proceedings of the 4th International Power Electronics and Motion Control Conference, Xi’an (2004)

    Google Scholar 

  15. Caponetto, R., Fortuna, L., Porto, D.: A new tuning strategy for non integer order PID controller. In: Proceedings of the First IFAC Workshop on Fractional Differentiation and Its Application, Bordeaux, France, pp. 168–173 (2004)

    Google Scholar 

  16. Leu, J.F., Tsay, S.Y., Hwang, C.: Design of optimal fractional-order PID controllers. J. Chin. Inst. Chem. Eng., 33(2), 193–202 (2002)

    Google Scholar 

  17. Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20, 823–831 (2010)

    Article  Google Scholar 

  18. Zolotas, A.C., Halikias, G.D.: Optimal design of PID controllers using the QFT method. IEE Proc., Control Theory Appl., 146(6), 585–589 (1999)

    Article  Google Scholar 

  19. Borghesani, C., Chait, Y., Yaniv, O.: The Quantitative Feedback Theory Toolbox for MATLAB. The MathWorks, Natick (1995)

    Google Scholar 

  20. Thomson, D.F.: Optimal and Sub-optimal Loop Shaping in Quantitative Feedback Theory. School of Mechanical Engineering, Purdue University, West Lafayette (1990)

    Google Scholar 

  21. Gera, A., Horowitz, I.: Optimization of the loop transfer function. Int. J. Control 31, 389–398 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frannson, C.M., Lenmartson, B., Wik, T., Holmstrom, K., Saunders, M., Gutman, P.O.: Global Controller optimization using Horowitz bounds. In: Proceedings of the IFAC 15th Trienial World Congress, Barcelona, Spain (2002)

    Google Scholar 

  23. Chait, Y., Chen, Q., Hollot, C.V.: Automatic loop-shaping of QFT controllers via linear programming. J. Dyn. Syst. Meas. Control 121, 351–357 (1999)

    Article  Google Scholar 

  24. Yaniv, O., Nagurka, M.: Automatic loop shaping of structured controllers satisfying qft performance. Technical report (2004)

  25. Chen, W.H., Ballance, D.J., Li, Y.: Automatic loop-shaping of QFT using Genetic Algorithms. Center for Systems and Control, University (2006)

  26. Cervera, J., Bafios, A.: Automatic loop shaping in QFT by using CRONE structures. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Application, Porto, Portugal (2006)

    Google Scholar 

  27. Monje, C.A., Vinagre, B.M., Chen, Y.Q., Feliu, V., Lanusse, P., Sabatier, J.: Optimal tuning for fractional PI α D β controllers. Fractional Differentiation and its Application, Ubooks, Germany (2006)

  28. Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.Q.: On auto-tuning of fractional order PI α D β controllers. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Application, Porto, Portugal (2006)

    Google Scholar 

  29. Meng, L., Xue, D.: Automatic loop shaping in fractional-order QFT controllers using Particle Swarm Optimization. In: IEEE International Conference on Control and Automation, Christchurch, New Zealand, pp. 2182–2187 (2009)

    Chapter  Google Scholar 

  30. Nataraj, P.S.V., Tharewal, S.: An interval analysis algorithm for automated controller synthesis in QFT designs. J. Dyn. Syst. Meas. Control 129, 311–321 (2007)

    Article  Google Scholar 

  31. Nataraj, P.S.V., Kubal, N.: Automatic loop shaping in QFT using hybrid optimization and constraint propagation techniques. Int. J. Robust Nonlinear Control 17, 251–264 (2007)

    Article  MATH  Google Scholar 

  32. Nataraj, P.S.V., Deshpande, M.M.: Automated synthesis of fixed structure QFT controller using interval constraint satisfaction techniques. In: Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, pp. 4976–4981 (2008)

    Google Scholar 

  33. Manual for Model 730: magnetic levitation system. Educational Control Products, California, USA (1999)

  34. Jesus, L.C., Diana, H.A., Luis, A.B.: Nonlinear control of a magnetic levitation system. In: Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Morelos, México, pp. 391–396 (2009)

    Google Scholar 

  35. Satoh, Y., Nakamura, H., Nakamura, N., Katayama, H., Nishitani, H.: Robust adaptive control of nonlinear systems with convex input constraints: case study on the magnetic levitation system. In: ICROS-SICE International Joint Conference, Fukuoka International Congress Center, Japan, pp. 4411–4416 (2009)

    Google Scholar 

  36. Lin, F.J., Chen, S.Y., Shyu, K.K.: Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system. IEEE Trans. Neural Netw. 20(6), 938–951 (2009)

    Article  Google Scholar 

  37. Chait, Y., Yaniv, O.: MISO computer aided control design using QFT. Int. J. Robust Nonlinear Control 3, 47–54 (1993)

    Article  MATH  Google Scholar 

  38. Chait, Y., Tsypkin, Y.: SISO QFT design with non-parametric uncertainties. Presentation at the 1993 American Control Conference, University of Massachusetts, USA, pp. 1694–1695 (1993)

  39. Krokhin, A., Jeavons, P., Jonsson, P.: Constraint satisfaction problems on intervals and lengths. SIAM J. Discrete Math. 17(3), 453–477 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Benhamou, F., Granvilliers, L.: COCONUT deliverable D1 algorithms for nonlinear constrained and optimization problems: The State of The Art. Technical report, University of Nantes (2001)

  41. Hansen, E., Walster, G.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2005)

    Google Scholar 

  42. Benhamou, F., Goualard, F., Granvilliers, L.: Revising hull and box consistency. In: Proc. of 16th International Conference on Logic Programming, Las Cruses, pp. 230–244 (1999)

    Google Scholar 

  43. Granvilliers, L.: RealPaver: An interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  44. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Advances in Industrial Control. Springer, New York (2010)

    Book  MATH  Google Scholar 

  46. Caponetto, R., Dongola, G., Petras, I.: Fractional Order Systems: Modelling and Control Applications. World Scientific Series on Nonlinear Science. World Scientific, Singapore (2010)

    Book  Google Scholar 

  47. Das, S.: Functional Fractional Calculus. Springer, New York (2008)

    MATH  Google Scholar 

  48. Petras, I.: Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, New York (2011)

    Book  MATH  Google Scholar 

  49. Petras, I., Podlubny, I., O’Leary, P., Dorcak, L., Vinagre, B.: Analogue realization of fractional order controllers. FBERG, Technical University of Kosice, Kosice (2002)

  50. Vinagre, B., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Chengbin, M., Hori, Y.: Fractional-order control: theory and applications in motion control. IEEE Ind. Electron. Mag. 1(4), 6–16 (2007)

    Article  Google Scholar 

  52. Yang, Z.J., Tateishi, M.: Adaptive robust nonlinear control of a magnetic levitation system. Automatica 37, 1125–1131 (2001)

    Article  MATH  Google Scholar 

  53. Kaloust, J., Ham, C., Jongekryg, E.: Nonlinear robust control design for levitation propulsion of a maglev system. IEE Proc., Control Theory Appl. 151, 460–464 (2004)

    Article  Google Scholar 

  54. Doyle, J., Francis, B., Tannenbaum, A.: Feedback Control Theory. Macmillan, London (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh D. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, M.D., Nataraj, P.S.V. & Vyawahare, V.A. Automated design of fractional PI QFT controller using interval constraint satisfaction technique (ICST). Nonlinear Dyn 69, 1405–1422 (2012). https://doi.org/10.1007/s11071-012-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0357-7

Keywords

Navigation