Skip to main content
Log in

Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper analyzes the hyperchaotic behaviors of the newly presented simplified Lorenz system by using a sinusoidal parameter variation and hyperchaos control of the forced system via feedback. Through dynamic simulations which include phase portraits, Lyapunov exponents, bifurcation diagrams, and Poincaré sections, we find the sinusoidal forcing not only suppresses chaotic behaviors, but also generates hyperchaos. The forced system also exhibits some typical bifurcations such as the pitchfork, period-doubling, and tangent bifurcations. Interestingly, three-attractor coexisting phenomenon happens at some specific parameter values. Furthermore, a feedback controller is designed for stabilizing the hyperchaos to periodic orbits, which is useful for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 72(2–3), 155–157 (1979)

    Article  Google Scholar 

  2. Kapitaniak, T., Chua, L.O.: Hyperchaotic attractor of unidirectionally coupled Chua’s circuit. Int. J. Bifurc. Chaos 4(2), 477–482 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao, T.G., Chen, G.R., Chen, Z.Q., Cang, S.J.: The generation and circuit implementation of a new hyper-chaos based upon Lorenz system. Phys. Lett. A 361, 78–86 (2007)

    Article  MATH  Google Scholar 

  4. Wang, F.Q., Liu, C.X.: Hyperchaos evolved from the Liu chaotic system. Chin. Phys. Soc. 15(5), 963–968 (2006)

    Article  Google Scholar 

  5. Niu, Y.J., Wang, X.Y., Wang, M.J., Zhang, H.G.: A new hyperchaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 15, 3518–3524 (2010)

    Article  Google Scholar 

  6. Zheng, S., Dong, G.G., Bi, Q.S.: A new hyperchaotic system and its synchronization. Appl. Math. Comput. 215, 3192–3200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou, X.B., Wu, Y. Li, Y., Xue, H.Q.: Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters. Chaos Solitons Fractals 39, 2477–2483 (2009)

    Article  MATH  Google Scholar 

  8. Qi, G.Y., van Wyk, M.A., van Wyk, B.J., Chen, G.R.: On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Y.X., Tang, W.K.S., Chen, G.R.: Hyperchaos evolved from the generalized Lorenz equation. Int. J. Circuits Theor. Appl. 33(4), 235–251 (2005)

    Article  MATH  Google Scholar 

  10. Chen, A., Lu, J., Lü, J.H., Yu, S.M.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006)

    Article  Google Scholar 

  11. Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15(10), 3367–3375 (2005)

    Article  Google Scholar 

  12. Li, Y.X., Chen, G.R., Tang, W.K.S.: Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst. II, Express Briefs 52(4), 204–207 (2005)

    Article  Google Scholar 

  13. Wang, G.Y., Zhang, X., Zheng, Y., Li, Y.X.: A new modified hyperchaotic Lü system. Physica A 371, 260–272 (2006)

    Article  MathSciNet  Google Scholar 

  14. Čelikovský, S., Chen, G.R.: On a generalized Lorenz canonical form of chaotic systems. Int. J. Bifurc. Chaos 12(8), 1789–1812 (2002)

    Article  MATH  Google Scholar 

  15. Chen, T., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(7), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(3), 659–661 (2002)

    Article  MATH  Google Scholar 

  17. Lü, J.H., Chen, G.R., Cheng, D., Čelikovský, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2928 (2002)

    Article  MATH  Google Scholar 

  18. Ott, E., Grebogi, G., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brandt, M.E., Chen, G.R.: Bifurcation control of two nonlinear models of cardiac activity. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44, 1031–1034 (1997)

    Article  Google Scholar 

  20. Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 163–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kocarev, L.G., Maggio, M., Ogorzalek, M., Pecora, L., Yao, K.: Applications of chaos in modern communication systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 385–527 (2001)

    Article  MathSciNet  Google Scholar 

  22. Zhu, C.X.: Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers. Appl. Math. Comput. 216, 3126–3132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dou, F.Q., Sun, J.A., Duan, W.S., Lü, K.P.: Controlling hyperchaos in the new hyperchaotic system. Commun. Nonlinear Sci. Numer. Simul. 14, 552–559 (2009)

    Article  Google Scholar 

  24. Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366, 217–222 (2007)

    Article  MATH  Google Scholar 

  25. Mirus, K.A., Sprott, J.C.: Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. Phys. Rev. A 59, 5313–5324 (1999)

    Google Scholar 

  26. Tam, L.M., Chen, J.H., Chen, H.K., Tou, W.M.S.: Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation. Chaos Solitons Fractals 38, 826–839 (2008)

    Article  Google Scholar 

  27. Sun, M., Tian, L.X., Zeng, C.Y.: The energy resources system with parametric perturbations and its hyperchaos control. Nonlinear Anal., Real World Appl. 10, 2620–2626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, X.Q., Lu, J.A., Iu, H.H.C., Wong, S.C.: Suppression and generation of chaos for a three-dimensional autonomous system using parametric perturbations. Chaos Solitons Fractals 31, 811–819 (2007)

    Article  Google Scholar 

  29. Sun, K.H., Sprott, J.C.: Dynamics of a simplified Lorenz system. Int. J. Bifurc. Chaos 19(4), 1357–1366 (2009)

    Article  MATH  Google Scholar 

  30. Vaněček, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of People’s Republic of China (Grant No. 61161006), and the National Science Foundation for Post-doctoral Scientists of People’s Republic of China (Grant No. 20070420774). One of us (Xuan Liu) wishes to thank Prof. Guanrong Chen for discussions by E-mail.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, K., Liu, X., Zhu, C. et al. Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn 69, 1383–1391 (2012). https://doi.org/10.1007/s11071-012-0354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0354-x

Keywords

Navigation