Skip to main content
Log in

Fractional Derivatives Applied to Phase-Space Reconstructions

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The concept and application of phase-space reconstructions are reviewed. Fractional derivatives are then proposed for the purpose of reconstructing dynamics from a single observed time history. A procedure is presented in which the fractional derivatives of time series data are obtained in the frequency domain. The method is applied to the Lorenz system. The ability of the method to unfold the data is assessed by the method of global false nearest neighbors. The reconstructed data is used to compute recurrences and correlation dimensions. The reconstruction is compared to the commonly used method of delays in order to assess the choice of reconstruction parameters, and also the quality of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennel, M., Brown, R., and Abarbanel, H. D. I., ‘Determining embedding dimension for phase-space reconstruction using a geometrical construction’, Physical Review A45, 1992, 3403–3411.

    Google Scholar 

  2. Abarbanel, H. D. I., Brown, R., Sidorowich, J., and Tsimring, L., ‘The analysis of observed chaotic data in physical systems’, Reviews of Modern Physics65, 1993, 1331–1392.

    Google Scholar 

  3. Takens, F., ‘Detecting strange attractors in turbulence’, Lecture Notes in Mathematics898, 1981, 366–381.

    Google Scholar 

  4. Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S., ‘Geometry from a time series’, Physical Review Letters45(9), 1980, 712–716.

    Google Scholar 

  5. Noakes, L., ‘The Takens embedding theorem’, International Journal of Bifurcation and Chaos1(4), 1991, 867–872.

    Google Scholar 

  6. Fraser, A. M., ‘Reconstructing attractors from scalar time series: A comparison of singular system analysis and redundancy criteria’, Physica D34, 1989, 391–404.

    Google Scholar 

  7. Ravindra, B., ‘Comments on the physical interpretation of proper orthogonal modes in vibrations’, Journal of Sound and Vibration219(1), 1999, 189–192.

    Google Scholar 

  8. Fraser, A. M. and Swinney, H. L., ‘Independent coordinates for strange attractors from mutual information’, Physical Review A33(2), 1986, 1134–1140.

    Google Scholar 

  9. Cao, L., ‘Practical method for determining the minimum embedding dimension of a scalar time series’, Physica D110, 1997, 43–50.

    Google Scholar 

  10. Potopov, A., ‘Distortions of reconstruction for chaotic attractors’, Physica D101, 1997, 207–226.

    Google Scholar 

  11. Mindlin, G. B. and Solari, H. G., ‘Topologically inequivalent embeddings’, Physical Review E52(2), 1995, 1497–1502.

    Google Scholar 

  12. Feeny, B. F. and Liang, J. W., ‘Phase-space reconstructions and stick-slip’, Nonlinear Dynamics13(1), 1997, 39–57.

    Google Scholar 

  13. Gilmore, R., ‘Topological analysis of chaotic dynamical systems’, Review of Modern Physics70(4), 1998, 1455–1526.

    Google Scholar 

  14. Gilmore, R. and Lefranc, M., The Topology of Chaos, Wiley, New York, 2002.

    Google Scholar 

  15. Lin, G., ‘Phase-Space Reconstruction by Alternative Methods’, M.S. Thesis, Michigan State University, East Lansing, Michigan, 2001.

  16. Auerbach, D., Cvitanovic, P., Eckmann, J.-P., Gunaratne, G., and Procaccia, I., ‘Exploring chaotic notion through periodic orbits’, Physical Review Letters58, 1987, 2387.

    Google Scholar 

  17. Lathrop, D. P. and Kostelich, E. J., ‘Characterization of an experimental strange attractor by periodic orbits’, Physical Review A40, 1989, 4028.

    Google Scholar 

  18. Tufillaro, N. B., Abbott, T., and Reilly, J., An Experimental Approach to Nonlinear Dynamics and Chaos, Addison-Wesley, New York, 1992.

    Google Scholar 

  19. Grebogi, C., Ott, E., and Yorke, J., ‘Unstable periodic orbits and the dimensions of multifractal chaotic attractors’, Physical Review A37(5), 1988, 1711–1724.

    Google Scholar 

  20. Kesaraju, R. V. and Noah, S. T., ‘Characterization and detection of parameter variations of nonlinear mechanical systems’, Nonlinear Dynamics6, 1994, 433–457.

    Google Scholar 

  21. Van de Wouw, N., Verbeek, G., and Van Campen, D. H., ‘Nonlinear parametric identification using chaotic data’, Journal of Vibration and Control1, 1995, 291–305.

    Google Scholar 

  22. Yuan, C.-M. and Feeny, B. F., ‘Parametric identification of chaotic systems’, Journal of Vibration and Control4(4), 1998, 405–426.

    Google Scholar 

  23. Feeny, B. F., Yuan, C.-M., and Cusumano, J. P., ‘Parametric identification of an experimental two-well oscillator’, Journal of Sound and Vibration247(5), 2001, 785–806.

    Article  Google Scholar 

  24. Gerschenfeld, N., ‘An Experimentalist’s introduction to the observation of dynamical systems’, in Directions in Chaos, Vol. II, Hao Bai-Lin (ed.), World Scientific, Singapore, 1988.

    Google Scholar 

  25. Feder, J., Fractals, Plenum Press, New York, 1988.

    Google Scholar 

  26. Feeny, B. F., ‘Fast multifractal analysis by recursive box-covering’, International Journal of Bifurcations and Chaos10(9), 2000, 2277–2287.

    Google Scholar 

  27. Grassberger, P. and Proccacia, I., ‘Characterization of strange attractors’, Physical Review Letters50, 1983, 346–349.

    Google Scholar 

  28. Malraison, G., Atten, P., Berge, P., and Dubois, M., ‘Dimension of strange attractors: An experimental determination of the chaotic regime of two convective systems’, Journal of Physics Letters44, 1983, 897–902.

    Google Scholar 

  29. Cusumano, J. P., ‘Low-Dimensional, Chaotic, Nonplanar Motions of the Elastica: Experiment and Theory’, PhD Thesis, Cornell University, Ithaca, New York, 1990.

  30. Bagley, R. L. and Calico, R. A., ‘Fractional order state equations for the control of viscoelastically damped structures’, AIAA Journal of Guidance14(2), 1991, 304–311.

    Google Scholar 

  31. Padovan, J. and Sawicki, J. T., ‘Nonlinear vibrations of fractionally damped systems’, Nonlinear Dynamics16(4), 1998, 321–336.

    Google Scholar 

  32. Zhang, W. and Shimizu, N., ‘Numerical algorithm for dynamic problems involving fractional operators’, JSME International Journal, Series C41(3), 1998, 364–370.

    Google Scholar 

  33. He, J. H., ‘Approximate analytical solution for seepage flow with fractional derivatives in porous media’, Computational Methods in Applied Mechanics and Engineering167, 1998, 57–68.

    Google Scholar 

  34. Stiassnie, M., ‘A look at fractal functions through their fractional derivatives’, Fractals5(4), 1997, 561–564.

    Google Scholar 

  35. Oldham, K. B. and Spanier, J., The Fractional Calculus. Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.

    Google Scholar 

  36. Beran, J., Statistics for Long-Memory Processes, Chapman & Hall, London, 1994.

    Google Scholar 

  37. Baillie, R. T., ‘Long memory processes and fractional integration in econometrics’, Journal of Econometrics73(1), 1996, 5–59.

    Google Scholar 

  38. Tseng, C.-C., Pei, S.-C., and Hsia, S.-C., ‘Computation of fractional derivatives using Fourier transform and digital FIR differentiator’, Signal Processing80, 2000, 151–159.

    Google Scholar 

  39. Ewins, D. J., Modal Testing: Theory and Practice, Research Studies Press, Letchworth, UK, 1984.

    Google Scholar 

  40. Feeny, B. F. and Lin, G., ‘Reconstructing the phase space with fractional derivatives’, in ASME International Design Engineering Technical Conferences, Chicago, Illinois, September 2–6, 2003.

  41. Lorenz, E. N., ‘Deterministic nonperiodic flow’, Journal of Atmospheric Science20, 1963, 130–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Feeny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feeny, B., Lin, G. Fractional Derivatives Applied to Phase-Space Reconstructions. Nonlinear Dyn 38, 85–99 (2004). https://doi.org/10.1007/s11071-004-3748-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-004-3748-6

Key words:

Navigation