Skip to main content
Log in

A luminescent supramolecular assembly composed of a single-walled carbon nanotube and a molecular magnet precursor

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetism of supramolecular assemblies of single-walled carbon nanotubes (SWCNTS) with a magnetic dinuclear molecule is investigated. Raman, optical absorption and confocal fluorescence images are used to probe the interaction of the dinuclear compound and the SWCNT. The supramolecular assembly shows antiferromagnetism, on the contrary to the case when strong electronic doping of the SWCNT occurs, yielding a spin-glass system, and contrary to the case of the dinuclear molecular crystal, which is ferromagnetic. The SWCNT imposes the antiferromagnetic order to the dinuclear molecule, corroborating recent findings that antiferromagnetism is present in pure SWCNTs. Two theoretical models are used to fit the data, both yielding good fitting results. The nanoparticle size range is around 2–10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida JRLd, Thouless DJ (1978) Stability study of the SK solution of a spin glass model. J Phys A 11:983

    Article  Google Scholar 

  • Bandyopadhyay M (2009) Thermodynamic properties of magneto-anisotropic nanoparticles. J Phy: Condens Matter 21:236003. doi:10.1088/0953-8984/21/23/236003

    Article  Google Scholar 

  • Beuneu F, l’Huillier C, Salvetat JP, Bonard JM, Forro L (1999) Modification of multiwall carbon nanotubes by electron irradiation: an ESR study. Phys Rev B 59(8):5945–5949. doi:10.1103/PhysRevB.59.5945

    Article  CAS  Google Scholar 

  • Bohn JE, Etchegoin PG, Ru ECL, Xiang R, Chiashi S, Maruyama S (2010) Estimating the raman cross sections of single carbon nanotubes. ACS Nano 4(6):3466–3470

    Article  CAS  Google Scholar 

  • Chichak KS, Star A, Altoé MVP, Stoddart JF (2005) Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry. Small 1(4):452–461

    Article  CAS  Google Scholar 

  • Das S, Patra M, Majumdar S, Giri S (2009) Exchange bias effect at the irregular interfaces between Co and CoO nanostructures. J Alloy Compd 488:27–30

    Article  CAS  Google Scholar 

  • Du M, Jiang XJ, Zhao XJ, Cai H & Ribas J (2006) Novel metallosupramolecular networks constructed from Cu-II, Ni-II, and Cd-II with mixed ligands: crystal structures, fluorescence, and magnetism. Eu J Inorg Chem(6):1245–1254. doi:10.1002/ejic.200500822

  • Dul MC, Pardo E, Lescouezec R, Journaux Y, Ferrando-Soria J, Ruiz-Garcia R, Ruiz-Perez C (2010) Supramolecular coordination chemistry of aromatic polyoxalamide ligands: a metallosupramolecular approach toward functional magnetic materials [Review]. Coord Chem Rev 254(19–20):2281–2296. doi:10.1016/j.ccr.2010.03.003

    Article  CAS  Google Scholar 

  • Fainchtein R, Brown DM, Siegrist KM, Monica AH, Hwang ER, Milner SD, Davis CC (2012) Time-dependent near-blackbody thermal emission from pulsed laser irradiated vertically aligned carbon nanotube arrays. Phys Rev B 85(12):125432. doi:10.1103/PhysRevB.85.125432

    Article  Google Scholar 

  • Fernandez I, Ruiz R, Faus J, Julve M, Lloret F, Cano J, Munoz MC (2001) Ferromagnetic coupling through spin polarization in a dinuclear copper(II) metallacyclophane. Angew Chem-Intern Ed 40(16):3039–3042. doi:10.1002/1521-3757(20010817)113:16<3129:aid-ange3129>3.0.co;2-j

    Article  CAS  Google Scholar 

  • Ferrando-Soria J, Grancha T, Pasan J, Ruiz-Perez C, Canadillas-Delgado L, Journaux Y, Pardo E (2012) Solid-state aggregation of metallacyclophane-based Mn(II)Cu(II) one-dimensional Ladders. Inorg Chem 51(13):7019–7021. doi:10.1021/ic300953n

    Article  CAS  Google Scholar 

  • Feygenson M, Yiu Y, Kou A, Kim K-S, Aronson MC (2010) Controlling the exchange bias field in Co core/CoO shell nanoparticles. Phys Rev B 81:195445

    Article  Google Scholar 

  • Gonzalez JA, Andres JP, Toro JAD, Muniz P, Munoz T, Crisan O, Riveiro JM (2009) Co–CoO nanoparticles prepared by reactive gas-phase aggregation. J Nanopart Res 11:2105–2111

    Article  CAS  Google Scholar 

  • Gupta V, Gupta BK, Kotnala RK, Narayanan TN, Grover V, Shah J, Agrawal V, Chand S, Shanker V (2011) Defect induced photoluminescence and ferromagnetic properties of bio-compatible SWCNT/Ni hybrid bundles. J Colloid Interface Sci 362(2):311–316. doi:10.1016/j.jcis.2011.06.074

    Article  CAS  Google Scholar 

  • Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors—graphitic microtubules. Phys Rev Lett 68(10):1579–1581. doi:10.1103/PhysRevLett.68.1579

    Article  CAS  Google Scholar 

  • Hua J, Lin WB (2004) Chiral metallacyclophanes: self-assembly, characterization, and application in asymmetric catalysis. Org Lett 6(6):861–864. doi:10.1021/ol036111v

    Article  CAS  Google Scholar 

  • Islam MF, Milkie DE, Torrens ON, Yodh AG, Kikkawa JM (2005) Magnetic heterogeneity and alignment of single wall carbon nanotubes. Phys Rev B 71:201401–201404

    Article  Google Scholar 

  • Kim YH, Choi J, Chang KJ, Tomanek D (2003) Defective fullerenes and nanotubes as molecular magnets: an ab initio study. Phys Rev B 68(12):125420. doi:10.1103/PhysRevB.68.125420

    Article  Google Scholar 

  • Li RK, Greaves C (2004) One-dimensional ferromagnetism of gaudefroyite Ca4(MnO)3(BO3)3CO3. Phys Rev B 70(13):132411. doi:10.1103/PhysRevB.70.132411

    Article  Google Scholar 

  • Likodimos V, Glenis S, Guskos N, Lin CL (2007) Antiferromagnetic behavior in single-wall carbon nanotubes. Phys Rev B 76(7):075420. doi:10.1103/PhysRevB.76.075420

    Article  Google Scholar 

  • Lin R, Yip JHK, Zhang K, Koh LL, Wong KY, Ho KP (2004) Self-assembly and molecular recognition of a luminescent gold rectangle [Review]. J Am Chem Soc 126(48):15852–15869. doi:101021/ja0456508

    Article  CAS  Google Scholar 

  • Lu J, J-x Yang, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375

    Article  CAS  Google Scholar 

  • Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68(5):631–634. doi:10.1103/PhysRevLett.68.631

    Article  CAS  Google Scholar 

  • Pardo E, Cangussu D, Lescouezec R, Journaux Y, Pasan J, Delgado FS, Lloret F (2009) Molecular-programmed self-assembly of homo- and heterometallic tetranuclear coordination compounds: synthesis, crystal structures, and magnetic properties of rack-type (Cu2M2II)−M−II complexes (M = Cu and Ni) with tetranucleating phenylenedioxamato bridging ligands [Article]. Inorg Chem 48(11):4661–4673. doi:10.1021/ic900055d

    Article  CAS  Google Scholar 

  • Park JS, Sasaki K, Saito R, Izumida W, Kalbac M, Farhat H, Dresselhaus MS (2009) Phys Rev B 80:081402(R)

    Google Scholar 

  • Pereira CLM, Pedroso EF, Stumpf HO, Novak MA, Ricard L, Ruiz-Garcia R, Journaux Y (2004) A (CuCoII)−Co−II metallacyclophane-based metamagnet with a corrugated brick-wall sheet architecture. Ang Chem -Int Ed 43(8):955–958. doi:10.1002/anie.200352604

    Google Scholar 

  • Qian Z, Wang C, Feng H, Chen C, Zhou J, Chen J (2011) Well dispersed single-walled carbon nanotubes with strong visible fluorescence in water for metal ions sensing. Chem Commun 47:7167–7169

    Article  CAS  Google Scholar 

  • Sáfar GAM, CarvalhoDa-Silva D, Idemori YM, Ribeiro HB, Fantini C, Plentz FO, Rebouças JS (2010) Measuring the electronic properties of single-walled carbon nanotubes with adsorbed porphyrins using optical transitions. J Porph Phthalocyanines 14:885–890

    Article  Google Scholar 

  • Sáfar GAM, Barros WP, Idemori YM, CarvalhoDa-Silva D, Mendes JBS, Sinnecker EHCP, Stumpf HO (2012) Multiple magnetic characteristics in pure and Mn porphyrin-doped single-walled carbon nanotubes. J Nanopart Res 14(6):912. doi:10.1007/s11051-012-0912-7

    Article  Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic-structure of chiral graphene tubules. Appl Phys Lett 60(18):2204–2206. doi:10.1063/1.107080

    Article  CAS  Google Scholar 

  • Shina NC, Leea Y-H, Shina YH, Kimb J, Lee Y-W (2010) Synthesis of cobalt nanoparticles in supercritical methanol. Mater Chem Phys 124:140–144

    Article  Google Scholar 

  • Steuerman DW, Star A, Narizzano R, Choi H, Ries RS, Nicolini C, Heath JR (2002) Interactions between conjugated polymers and single-walled carbon nanotubes. J Phys Chem B 106:3124–3130

    Article  CAS  Google Scholar 

  • Tan PH, Rozhin AG, Hasan T, Hu P, Scardaci V, Milne WI, Ferrari AC (2007) Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. Phys Rev Lett 99:137402

    Article  CAS  Google Scholar 

  • Wang X, Cao L, Bunker CE, Meziani MJ, Lu F, Guliants EA, Sun Y-P (2010) Fluorescence decoration of defects in carbon nanotubes. J Phys Chem C 114:20941–20946

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support. We thank Miguel Julve for a private communication about the values of magnetization of the pure Na4[Cu2(mpba)2]·8H2O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. M. Sáfar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáfar, G.A.M., Simões, T.R.G., de Paula, A.M. et al. A luminescent supramolecular assembly composed of a single-walled carbon nanotube and a molecular magnet precursor. J Nanopart Res 15, 1436 (2013). https://doi.org/10.1007/s11051-013-1436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1436-5

Keywords

Navigation