Skip to main content
Log in

Novel fabrication and catalytic application of poly(ethylenimine)-stabilized gold–silver alloy nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Novel synthesis of amine-stabilized Au–Ag alloy nanoparticles with controlled composition has been devised using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. The composition of Au–Ag alloy nanoparticles was readily controlled by varying the initial relative amount of HAuCl4 and AgNO3. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of Ag+ in the presence of Cl from the gold salt was avoided. On this basis, the relatively high concentrations of HAuCl4 and AgNO3 salts were used for the fabrication of Au–Ag alloy nanoparticles. The PEI thus plays triple roles in this study that include the co-reducing agents for HAuCl4 and AgNO3, the stabilizing agents for Au–Ag alloy nanoparticles, and even the dissolving agents for AgCl. As a novel material for use in catalysis, the Au–Ag alloy nanoparticles including pure Au and Ag samples were exploited as catalysts for the reduction of 4-nitrophenol in the presence of NaBH4. As the Au content was increased in the Au–Ag alloy nanoparticles, the rate constant of the reduction was exponentially increased from pure Ag to pure Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelsayed V, Saoud KM, El-Shall MS (2006) Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts. J Nanopart Res 8:519–531

    Article  CAS  Google Scholar 

  • Alqudami A, Annapoorni S, Govind, Shivaprasad SM (2008) Ag–Au alloy nanoparticles prepared by electro-exploding wire technique. J Nanopart Res 10:1027–1036

    Article  CAS  Google Scholar 

  • Birks LS, Friedman H (1946) Particle size determination from X-ray line broadening. J Appl Phys 17:687–692

    Article  CAS  Google Scholar 

  • Chen D, Chen C (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562

    Article  CAS  Google Scholar 

  • Chen Y, Yeh C (2001) A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver colloidal mixtures. Chem Commun 371–372

  • Chen X, Zhao D, An Y, Zhang Y, Cheng J, Wang B, Shi L (2008) Formation catalytic activity of spherical composites with surfaces coated with gold nanoparticles. J Colloid Interface Sci 322:414–420

    Article  CAS  Google Scholar 

  • Chimentão RJ, Kirm I, Medina F, Rodríguez X, Cesteros Y, Salagre P, Sueiras JE, Fierro JLG (2005) Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles. Appl Surf Sci 252:793–800

    Article  Google Scholar 

  • Chosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl Catal A 268:61–66

    Article  Google Scholar 

  • Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • Demirok UK, Laocharoensuk R, Manesh KM, Wang J (2008) Ultrafast catalytic alloy nanomotors. Angew Chem Int Ed 47:9349–9351

    Article  CAS  Google Scholar 

  • Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243

    Article  CAS  Google Scholar 

  • Hayakawa K, Yoshimura T, Esumi K (2003) Preparation of gold–dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir 19:5517–5521

    Article  CAS  Google Scholar 

  • He ST, Xie SS, Yao JN, Gao HJ, Pang SJ (2002) Self-assembled two-dimensional superlattice of Au–Ag alloy nanocrystals. J Appl Phys Lett 81:150–152

    Article  CAS  Google Scholar 

  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  • Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-Induced inter-diffusion in AuAg core–shell nanoparticles. J Phys Chem B 104:11708–11718

    Article  CAS  Google Scholar 

  • Hu X, Wang X, Qu X, Dong S (2006) In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. J Phys Chem B 110:853–857

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001a) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Chem Commun 617–618

  • Jana NR, Gearheart L, Murphy CJ (2001b) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  • Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced Raman scattering. Langmuir 23:7178–7183

    Article  Google Scholar 

  • Kim K, Lee JW, Lee HB, Shin KS (2009) Novel Fabrication of Au nanoparticles films on planar and curved surfaces of glass and fiber materials. Langmuir 25:9697–9702

    Article  CAS  Google Scholar 

  • Kim K, Lee HB, Lee JW, Shin KS (2010) Poly(ethylenimine)-stabilized silver nanoparticles assembled into 2-dimensional arrays at water–toluene interface. J Colloid Interface Sci 345:103–108

    Article  CAS  Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  • Lee I, Han SW, Kim K (2001) Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 1782–1783

  • Lee KY, Lee YW, Lee J, Han SW (2010) Effect of ligand structure on the catalytic activity of Au nanocrystals. Colloids Surf A 372:146–150

    Article  CAS  Google Scholar 

  • Link S, El-sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  • Link S, Wang ZL, El-sayed MA (1999) Alloy formation gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533

    Article  CAS  Google Scholar 

  • Liz-Marzán LM, Philipse AP (1995) Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J Phys Chem 99:15120–15128

    Article  Google Scholar 

  • Lu X, Au L, Mclellan J, Li Z, Marquez M, Xia Y (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett 7:1764–1769

    Article  CAS  Google Scholar 

  • Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au–Ag alloy nanoparticles. Nano Lett 2:1235–1237

    Article  CAS  Google Scholar 

  • McFarland AD, Duyne RPV (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  • Papavassiliou GC (1976) Surface plasmons in small Au–Ag alloy particles. J Phys F 6:L103–L105

    Article  CAS  Google Scholar 

  • Patra AK, Dutta A, Bhaumik A (2010) Cu nanorods and nanospheres and their excellent catalytic activity in chemoselective reduction of nitrobenzenes. Catal Commun 11:651–655

    Article  CAS  Google Scholar 

  • Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20:9889–9892

    Article  CAS  Google Scholar 

  • Rashid MdH, Mandal TK (2007) Synthesis and catalytic application of nanostructured silver dendrites. J Phys Chem C 111:16750–16760

    Article  CAS  Google Scholar 

  • Rashid MdH, Bhattacharjee RR, Kotal A, Mandal TK (2006) Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir 22:7141–7143

    Article  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  Google Scholar 

  • Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  • Shang L, Jin L, Guo S, Zhai J, Dong S (2010) A facile and controllable strategy to synthesize Au–Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction. Langmuir 26:6713–6719

    Article  CAS  Google Scholar 

  • Shin KS, Kim JH (2011) One-step fabrication of poly(ethylenimine)-stabilized silver nanoparticles from insoluble silver chloride salt. Bull Korean Chem Soc 32:2469–2472

    Article  CAS  Google Scholar 

  • Shin Y, Dohnalkova A, Lin Y (2010) Preparation of homogeneous gold–silver alloy nanoparticles using the apoferritin cavity as a nanoreactor. J Phys Chem C 114:5985–5989

    Article  CAS  Google Scholar 

  • Singh AV, Bandgar BM, Kasture M, Prasad BLV, Sastry M (2005) Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. J Mater Chem 15:5115–5121

    Article  CAS  Google Scholar 

  • Singh S, D’Britto V, Prabhune AA, Ramana CV, Dhawan A (2010) Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34:294–301

    Article  CAS  Google Scholar 

  • Sun X, Dong S, Wang E (2005) High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir 21:4710–4712

    Article  CAS  Google Scholar 

  • Sun X, Dong S, Wang E (2006) One-step polyelectrolyte-based route to well-dispersed gold nanoparticles: synthesis and insight. Mater Chem Phys 96:29–33

    Article  CAS  Google Scholar 

  • Suyal G, Mennig M, Schmidt H (2003) Synthesis of nanocomposite thin films containing Ag–Au alloy colloids for wavelength tunability. J Mater Sci 38:1645–1651

    Article  CAS  Google Scholar 

  • Swathi T, Buvaneswari G (2008) Application of NiCo2O4 as a catalyst in the conversion of p-nitrophenol to p-aminophenol. Mater Lett 62:3900–3902

    Article  CAS  Google Scholar 

  • Vaidya MJ, Kulkarni SM, Chaudhari RV (2003) Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Org Proc Res Dev 7:202–208

    Article  CAS  Google Scholar 

  • Wang A, Liu J, Lin SD, Lin T, Mou C (2005) A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J Catal 233:186–197

    Article  CAS  Google Scholar 

  • Wang L, Shi X, Kariuki NN, Schadt M, Wang GR, Rendeng Q, Choi J, Luo J, Lu S, Zhong C (2007) Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties. J Am Chem Soc 129:2161–2170

    Article  CAS  Google Scholar 

  • Zhu J (2009) Composition-dependent plasmon shift in Au–Ag alloy nanotubes: effect of local field distribution. J Phys Chem C 113:3164–3167

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MEST) (Nos. 2011-0001218, 2011-0006737, 2011-0019157, and 2009-0072467).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuan Soo Shin or Kwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, K.S., Kim, J.H., Kim, I.H. et al. Novel fabrication and catalytic application of poly(ethylenimine)-stabilized gold–silver alloy nanoparticles. J Nanopart Res 14, 735 (2012). https://doi.org/10.1007/s11051-012-0735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0735-6

Keywords

Navigation