Skip to main content
Log in

Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study

  • Special focus: Safety of Nanoparticles
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The development of nanotechnologies may lead to dissemination of potentially toxic nanoparticles in the environment. Toxicology of these nano-sized particles is thus attracting attention of public and governments worldwide. Our research is focused on the in vitro response of eukaryotic cells to nanoparticles exposure. For this purpose, we used cellular models of primary target organs (lung: A549 alveolar epithelial cells), or secondary target organs (liver: WIF-B9, Can-10 and kidneys: NRK-52E, LLC-PK1 proximal cells), i.e., organs exposed if nanoparticles are translocated through epithelial barriers. These cells were exposed to TiO2, SiC nanoparticles or multi-walled carbon nanotubes (MWCNT). The influence of nanoparticles physico-chemical characteristics on various toxicological endpoints (cytotoxicity, reactive oxygen species generation, genotoxicity) was specified. Our data demonstrate that nanoparticles toxicity depend on their size, morphology, and chemical composition, the finest, spherical shaped, and anatase TiO2 nanoparticles being the more cytotoxic to NRK-52E cells, while SiC nanoparticles exert almost no cytotoxicity. MWCNT cytotoxicity neither depended on their length, nor on the presence of metal impurities. Nanoparticles cytotoxicity also depended on the exposed cell line. All the tested nanoparticles were uptaken by cells and caused intracellular reactive oxygen species generation. Relative to genotoxic effects, DNA strand breaks were detected in NRK-52E cells via the alkaline comet assay after exposure of cells to TiO2 nanoparticles and to a lesser extent after exposure to MWCNT, but no double strand breaks were detected. The originality of this study lies on the panel of nanomaterials which were tested on a variety of cell lines. All these data may lead to a better understanding of nanomaterial toxicity and hazards for health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cassio D, Macias RI, Grosse B, Marin JJ, Monte MJ (2007) Expression, localization, and inducibility by bile acids of hepatobiliary transporters in the new polarized rat hepatic cell lines, Can 3-1 and Can 10. Cell Tissue Res 330(3):447–460

    Article  CAS  PubMed  Google Scholar 

  • Decaens C, Durand M, Grosse B, Cassio D (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100(7):387–398

    Article  CAS  PubMed  Google Scholar 

  • Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Li H, Jiang J, So LK, Lam YW, Chu PK (2008) 3C-SiC nanocrystals as fluorescent biological labels. Small 4(8):1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Lao F, Li W, Li Y, Chen C, Qiu Y, Mao X, Li B, Chai Z, Zhao Y (2008) Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80:9426–9434

    Article  CAS  PubMed  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  PubMed  Google Scholar 

  • Glory J, Mierczynska A, Pinault M, Mayne-L’Hermite M, Reynaud C (2007) Dispersion study of long and aligned multi-walled carbon nanotubes in water. J Nanosci Nanotechnol 7(10):3458–3462

    Article  CAS  PubMed  Google Scholar 

  • Jin CY, Zhu BS, Wang XF, Lu QH (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21(9):1871–1877

    Article  CAS  PubMed  Google Scholar 

  • Jones AT (2007) Macropinocytosis: searching for an endocytic identity and a role in the uptake of cell penetrating peptides. J Cell Mol Med 11(4):670–684

    Article  CAS  PubMed  Google Scholar 

  • Marsh M, Pelchen-Matthews A (2000) Endocytosis in viral replication. Traffic 1(7):525–532

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164(9):1665–1668

    CAS  PubMed  Google Scholar 

  • Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105(4):411–414

    Article  CAS  PubMed  Google Scholar 

  • Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 635(1–2):113–117

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J (2003) DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 31(23):6819–6827

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y, Lee KH (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19(Suppl 1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Pignon B, Maskrot H, Leconte Y, Coste S, Reynaud C, Herlin-Boime N, Gervais M, Guyot Ferreol V, Pouget T, Tranchant JF (2008) Versatility of laser pyrolysis applied to synthesis of TiO2 nanoparticles, application to UV attenuation. Eur J Inorg Chem 2008:833–889

  • Pinault M, Mayne-L’Hermite M, Reynaud C, Beyssac O, Rouzaud JN, Clinard C (2004) Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-annealing effects. Diam Relat Mater 13(4–8):1266–1269

    Article  CAS  Google Scholar 

  • Pinault M, Mayne-L’Hermite M, Reynaud C, Pichot V, Launois P, Ballutaud D (2005) Growth of multiwalled carbon nanotube during the initial stages of aerosol-assisted CCVD. Carbon 116(1):2968–2976

    Article  CAS  Google Scholar 

  • Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74

    Article  CAS  PubMed  Google Scholar 

  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  CAS  PubMed  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185

    Article  CAS  PubMed  Google Scholar 

  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16(6–7):453–459

    Article  CAS  PubMed  Google Scholar 

  • Simon-Deckers A, Gouget B, Mayne-L’hermite M, Herlin-Boime N, Reynaud C, Carriere M (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253(1–3):137–146

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3(3):351–358

    Article  CAS  PubMed  Google Scholar 

  • Stearns RC, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 24(2):108–115

    CAS  PubMed  Google Scholar 

  • Strum JM, Wicken J, Stanbury JR, Karnovsky MJ (1971) Appearance and function of endogenous peroxidase in fetal rat thyroid. J Cell Biol 51(1):162–175

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Deng X, Yang S, Wang H, Zhao Y, Liu Y (2008a) Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology 2(1):28–32

    Article  CAS  Google Scholar 

  • Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008b) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80

    Article  CAS  PubMed  Google Scholar 

  • Yamashita R, Fujiwara Y, Ikari K, Hamada K, Otomo A, Yasuda K, Noda M, Kaburagi Y (2007) Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Mol Cell Biochem 298(1–2):83–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by ADEME (French Environment and Energy Management Agency), by the Région Ile-de-France in the framework of C’nano IdF. C’Nano-IdF is the nanoscience competence center of Paris Region, supported by CNRS, CEA, MESR and Région Ile-de-France. It was also funded by the French National Research Agency (ANR) and the AFSSET (the French Agency for Environmental and Occupational Health Safety).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Carrière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barillet, S., Simon-Deckers, A., Herlin-Boime, N. et al. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12, 61–73 (2010). https://doi.org/10.1007/s11051-009-9694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9694-y

Keywords

Navigation