Skip to main content
Log in

FT-IR Spectroscopy for Rapid Differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and Characterization of Aflatoxigenic Isolates Collected from Agricultural Environments

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

In agricultural areas, Aspergillus flavus, Aspergillus fumigatus and Aspergillus parasiticus are commonly identified in various feedstuffs and bioaerosols originated from feed handling. Some isolates belonging to these fungal species could produce mycotoxins and constitute a risk factor for human and animal health. In this study, Fourier-transform infrared spectroscopy was used for a rapid detection and characterization of 99 isolates collected from agricultural areas. The results showed a first cluster corresponding to strains previously attributed to the A. fumigatus group according to current taxonomic concepts, and a second cluster divided in 2 groups around reference strains of A. flavus and A. parasiticus species. The toxigenic capacity of isolates was evaluated by high performance liquid chromatography coupled to mass spectrometry. In the A. flavus group, only 6 strains of A. parasiticus and 4 strains of A. flavus were able to produce aflatoxins on culture media. FT-IR spectroscopy, respectively, allowed the differentiation of non-toxigenic and toxigenic A. flavus and A. parasiticus isolates at 75 and 100%. Discrimination between toxigenic and non-toxigenic A. fumigatus was not possible because all of the isolates produced at least one mycotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FT-IR spectroscopy:

Fourier-transform infrared spectroscopy

HPLC-MS:

High performance liquid chromatography coupled to mass spectrometry

References

  1. Frisvad JC, Thrane U, Samson RA, Pitt JI. Important mycotoxins and the fungi which produce them. Adv Exp Med Biol. 2006;571:3–31.

    Article  CAS  PubMed  Google Scholar 

  2. Adhikari A, Sen MM, Gupta-Bhattacharya S, Chanda S. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations. Sci Total Environ. 2004;326:123–41.

    Article  CAS  PubMed  Google Scholar 

  3. Garon D, Richard E, Sage L, Bouchart V, Pottier D, Lebailly P. Mycoflora and multimycotoxin detection in corn silage: experimental study. J Agric Food Chem. 2006;54(9):3479–84.

    Article  CAS  PubMed  Google Scholar 

  4. Lanier C, Heutte N, Richard E, Bouchart V, Lebailly P, Garon D. Mycoflora and mycotoxin production in oilseed cakes during farm storage. J Agric Food Chem. 2009;57(4):1640–5.

    Article  CAS  PubMed  Google Scholar 

  5. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153:1677–92.

    Article  CAS  PubMed  Google Scholar 

  6. Cotty PJ, Bayman DS, Egel DS, Elias KS. Agriculture, aflatoxins and Aspergillus. In: Powell KA, Renwick A, Peberdy JF, editors. The genus Aspergillus: from taxonomy and genetics to industrial applications. New York: Plenum Press; 1994. p. 1–27.

    Google Scholar 

  7. Cotty PJ. Aflatoxin-producing potential of communities of Aspergillus section Flavi from cotton producing areas in the United States. Mycol Res. 1997;101:698–704.

    Article  Google Scholar 

  8. Massey TE, Stewart RK, Daniels JM, Ling L. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B1 carcinogenicity. Exp Biol Med. 1995;208:213–27.

    CAS  Google Scholar 

  9. Sutton P, Waring P, Müllbacher A. Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunol Cell Biol. 1996;74:318–22.

    Article  CAS  PubMed  Google Scholar 

  10. Richard JL, DeBey MC. Production of gliotoxin during the pathogenic state in turkey poults by Aspergillus fumigatus Fresenius. Mycopathologia. 1995;129:111–5.

    Article  CAS  PubMed  Google Scholar 

  11. Klich MA. Identification of common Aspergillus species. Utrecht: Centraalbureau voor Schimmelcultures; 2002.

    Google Scholar 

  12. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O. Identification of the common food and airborne fungi, Aspergillus. In: Introduction to food and airborne fungi. Utrecht: Centraalbureau voor Schimmekultures; 2000. p. 64–97.

  13. Murakami H, Hayashi K, Ushijima S. Useful key characters separating three Aspergillus taxa: A. sojae, A. parasiticus, and A. toxicarius. J Gen Appl Microbiol. 1982;28:55–60.

    Article  Google Scholar 

  14. Klich MA, Pitt JL. Differentiation of Aspergillus flavus from A. parasiticus and other closely related species. Trans Br Mycol Soc. 1988;91:99–108.

    Article  Google Scholar 

  15. Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad JC, et al. Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol. 2007;59:53–66.

    Article  CAS  PubMed  Google Scholar 

  16. Kumeda Y, Asao T. Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi. Appl Environ Microbiol. 1996;62(8):2947–52.

    CAS  PubMed  Google Scholar 

  17. Criseo G, Bagnara A, Bisignano G. Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Lett Appl Microbiol. 2001;33:291–5.

    Article  CAS  PubMed  Google Scholar 

  18. Reiter E, Zentek J, Razzazi E. Review on sample preparation strategies and methods used for the analysis of aflatoxins in food and feed. Mol Nutr Food Res. 2009;53(4):508–24.

    Article  CAS  PubMed  Google Scholar 

  19. Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy. Nature. 1991;351(6321):81–2.

    Article  CAS  PubMed  Google Scholar 

  20. Naumann D. Infrared spectroscopy in microbiology. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 102–31.

    Google Scholar 

  21. Schaeberle MD, Levin IW, Lewis EN. Biological vibrational spectroscopic imaging. In: Gremlich HU, editor. Infrared and Raman Spectroscopy of biological materials. New York: Marcel Dekker; 2001. p. 231–58.

    Google Scholar 

  22. Helm D, Labischinski H, Schallehn G, Naumann D. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol. 1991;137:69–79.

    CAS  PubMed  Google Scholar 

  23. Rubio C, Ott C, Amiel C, Dupont-Moral I, Travert J, Mariey L. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control. J Microbiol Methods. 2006;64(3):287–96.

    Article  CAS  PubMed  Google Scholar 

  24. Amiel C, Mariey L, Curk-Daubie MC, Pichon P, Travert J. Potentiality of Fourier transform infrared spectroscopy (FT-IR) for discrimination and identification of dairy lactic acid bacteria. Lait. 2000;80:445–59.

    Article  CAS  Google Scholar 

  25. Sandt C, Sockalingum GD, Aubert D, Lepan H, Lepouse C, Jaussaud M, et al. Usee of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol. 2003;41:954–9.

    Article  CAS  PubMed  Google Scholar 

  26. Fischer G, Braun S, Thissen R, Dott W. FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods. 2006;64:63–77.

    Article  CAS  PubMed  Google Scholar 

  27. Linker R, Tsror L(Lahkim). Discrimination of soil-borne fungi using Fourier transform infrared attenuated total reflection spectroscopy. Appl Spect. 2008;62(3):302–5.

    Article  CAS  Google Scholar 

  28. Naumann D, Navarro-Gonzáles M, Peddireddi S, Kües U, Polle A. Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genet Biol. 2005;42(10):829–35.

    Article  PubMed  Google Scholar 

  29. Gordon SH, Schudy RB, Wheeler BC, Wicklow DT, Greene RV. Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn. Int J Food Microbiol. 1997;35:179–86.

    Article  CAS  PubMed  Google Scholar 

  30. Gordon SH, Jones RW, McClelland JF, Wicklow DT, Greene RV. Transient infrared spectroscopy for detection of toxigenic fungi in corn: potential for on-line evaluation. J Agric Food Chem. 1999;47:5267–72.

    Article  CAS  PubMed  Google Scholar 

  31. Fischer G, Müller T, Schwalbe R, Ostrowski R, Dott W. Species-specific profiles of mycotoxins produced in cultures and associated with conidia of airborne fungi derived from biowaste. Int J Hyg Environ Health. 2000;203(2):105–16.

    Article  CAS  PubMed  Google Scholar 

  32. Lefebvre J. Introduction aux analyses statistiques multidimentionnelles. Paris: Masson; 1980.

    Google Scholar 

  33. Giorni P, Magan N, Pietri A, Bertuzzi T, Battilani P. Studies of Aspergillus section Flavi isolated from maize in northern Italy. Int J Food Microbiol. 2007;113(3):330–8.

    Article  CAS  PubMed  Google Scholar 

  34. Raper KB, Fennell DI. The genus Aspergillus. Baltimore: Williams and Wilkins; 1965.

    Google Scholar 

  35. Rodrigues P, Soares C, Kozakiewicz Z, Paterson RRM, Lima N, Venâncio A. Identification and characterization of Aspergillus flavus and aflatoxins. In: Méndez-Vilas A, editor. Communicating current research and educational topics and trends in applied microbiology, vol. 2. Badajoz: Formatex; 2007. p. 527–34.

    Google Scholar 

  36. Wei DL, Jong SC. Production of aflatoxins by strains of the Aspergillus flavus group maintained in ATCC. Mycopathologia. 1986;93(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  37. Wicklow DT, Mcaplin CE, Platis CE. Characterization of the Aspergillus flavus population within an Illinois maize field. Mycol Res. 1998;102:263–8.

    Article  Google Scholar 

  38. Chang P-K, Horn BW, Dorner JW. Sequence breakpoints in the aflatoxin biosyntheis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol. 2005;42:914–23.

    Article  CAS  PubMed  Google Scholar 

  39. D’Mello JPE, MacDonald AMC. Mycotoxins. Anim Feed Sc Technol. 1997;69:155–66.

    Article  Google Scholar 

  40. Vesonder R, Haliburton J, Stubblefield R, Gilmore W, Peterson S. Aspergillus flavus and aflatoxins B1, B2, and M1 in corn associated with equine death. Arch Environ Contam Toxicol. 1991;20(1):151–3.

    Article  CAS  PubMed  Google Scholar 

  41. Scherm B, Palomba M, Serra D, Marcello A, Migheli Q. Detection of transcripts of the aflatoxin genes aflD, aflO, and aflP by reverse transcription-polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus. Int J Food Microbiol. 2005;98(2):201–10.

    Article  CAS  PubMed  Google Scholar 

  42. Criseo G, Racco C, Romeo O. High genetic variability in non-aflatoxigenic A. flavus strains by using Quadruplex PCR-based assay. Int J Food Microbiol. 2008;125(3):341–3.

    Article  CAS  PubMed  Google Scholar 

  43. Richard E, Heutte N, Bouchart V, Garon D. Evaluation of fungal contamination and mycotoxin production in maize silage. Anim Feed Sci Technol. 2009;148(2–4):309–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from OSEO (n°A0703015). The authors thank R. Picquet and V. Bouchart (Laboratoire Départemental Frank Duncombe, Conseil Général du Calvados) for their contribution to the analysis of mycotoxins by HPLC–MS. We would also like to acknowledge Margaret Dearing for improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Garon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garon, D., El Kaddoumi, A., Carayon, A. et al. FT-IR Spectroscopy for Rapid Differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and Characterization of Aflatoxigenic Isolates Collected from Agricultural Environments. Mycopathologia 170, 131–142 (2010). https://doi.org/10.1007/s11046-010-9304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9304-7

Keywords

Navigation