Skip to main content

Advertisement

Log in

Enhancement of Candida albicans Virulence After Exposition to Cigarette Mainstream Smoke

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The habit of cigarette smoking is associated with higher oral candidal carriage and possible predisposition to oral candidosis. The effects of exposure to smoke on the virulence properties of oral yeasts remain obscure. Hence, we showed in vitro the effect of cigarette smoke condensate (CSC) on ten clinical isolates of Candida albicans obtained from nonsmoking volunteers, as well the type-strain CBS562. CSC was generated by complete burn of five commercial cigarettes in an in-house smoking machine and used to prepare the culture broth in which the strains were grown. In 24-h intervals (T24, T48, and T72), the cells were harvested, washed, subcultured, and the resultant growth were evaluated for possible variations for secreted aspartyl protease, phospholipase, chondroitinase, and hemolysins, adhesion to acrylic and cell surface hydrophobicity (CSH). The results indicated a temporal increase in the secretion rates of enzymes, particularly when yeast cells were exposed to CSC for 48–72 h (P < 0.05). Similarly, adhesion to acrylic and CSH increased with exposure period (P < 0.05). Based on foregoing, we concluded that CSC may promote significant enhance in the secretion of candidal histolytic enzymes and adherence to denture surfaces, thereby promoting oral yeast carriage and possible infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen CM, Saffer A, Meister RK, Beck FM, Bradway S. Comparison of a lesion-inducing isolate and a non-lesional isolate of Candida albicans in an immunosuppressed rat model of oral candidiasis. J Oral Pathol Med. 1994;23:133–9. doi:10.1111/j.1600-0714.1994.tb01101.x.

    Article  CAS  PubMed  Google Scholar 

  2. Dostál J, Hamal P, Pavlícková L, Soucek M, Ruml T, Pichová I, et al. Simple method for screening Candida species isolates for the presence of secreted aspartyl proteases: a tool for the prediction of successful inhibitory treatment. J Clin Microbiol. 2003;41:712–6. doi:10.1128/JCM.41.2.712-716.2003.

    Article  PubMed  Google Scholar 

  3. Serda-Kantarcioĝlu A, Yücel A. Phospholipases and aspartyl protease activities in clinical Candida isolates with reference to the sources of strains. Mycoses. 2002;45:160–5. doi:10.1046/j.1439-0507.2002.00727.x.

    Article  Google Scholar 

  4. Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.

    Article  CAS  PubMed  Google Scholar 

  5. Williams DW, Walker R, Lewis MA, Allison RT, Potts AJ. Adherence of Candida albicans to oral epithelial cells differentiated by Papanicolaou staining. J Clin Pathol. 1999;52:529–31. doi:10.1136/jcp.52.7.529.

    Article  CAS  PubMed  Google Scholar 

  6. Sayers NM, Gomes BP, Drucker DB, Blinkhorn AS. Possible lethal enhancement of toxins from putative periodontopathogens by nicotine: implications for periodontal disease. J Clin Pathol. 1997;50:245–9. doi:10.1136/jcp.50.3.245.

    Article  CAS  PubMed  Google Scholar 

  7. Soysa NS, Ellepola AN. The impact of cigarette/tobacco smoking on oral candidosis: an overview. Oral Dis. 2005;11:268–73. doi:10.1111/j.1601-0825.2005.01115.x.

    Article  CAS  PubMed  Google Scholar 

  8. Rosa EA, Rached RN, Ignácio SA, Rosa RT, José da Silva W, Yau JY, et al. Phenotypic evaluation of the effect of anaerobiosis on some virulence attributes of Candida albicans. J Med Microbiol. 2008;57:1277–81. doi:10.1099/jmm.0.2008/001107-0.

    Article  PubMed  Google Scholar 

  9. Luo G, Samaranayake LP. Candida glabrata an emerging fungal pathogen exhibits superior relative cell surface hydrophobicity and adhesion to denture acrylic surfaces compared with Candida albicans. APMIS. 2002;110:601–10. doi:10.1034/j.1600-0463.2002.1100902.x.

    Article  CAS  PubMed  Google Scholar 

  10. Knight SA, Vilaire G, Lesuisse E, Dancis A. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun. 2005;73:5482–92. doi:10.1128/IAI.73.9.5482-5492.2005.

    Article  CAS  PubMed  Google Scholar 

  11. Gairola CC. Genetic effects of fresh cigarette smoke in Saccharomyces cerevisiae. Mutat Res. 1982;102:123–36. doi:10.1016/0165-1218(82)90113-6.

    Article  CAS  PubMed  Google Scholar 

  12. Gairola CC, Griffith RB. Recombinogenic activity of fresh cigarette smoke in Saccharomyces cerevisiae. Cancer Detect Prev. 1981;4:53–7.

    CAS  PubMed  Google Scholar 

  13. Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP. Cell wall and secreted proteins of Candida albicans: identification function and expression. Microbiol Mol Biol Rev. 1998;62:130–80.

    CAS  PubMed  Google Scholar 

  14. Ibrahim AS, Mirbod F, Filler SG, Banno Y, Cole GT, Kitajima Y, et al. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun. 1995;63:1993–8.

    CAS  PubMed  Google Scholar 

  15. Samaranayake LP, Raeside JM, MacFarlane TW. Factors affecting the phospholipases activity of Candida species in vitro. Sabouraudia. 1984;22:201–7.

    CAS  PubMed  Google Scholar 

  16. Tillonen J, Homann N, Rautio M, Jousimies-Somer H, Salaspuro M. Role of yeasts in the salivary acetaldehyde production from ethanol among risk groups for ethanol-associated oral cavity cancer. Alcohol Clin Exp Res. 1999;23:1409–15.

    CAS  PubMed  Google Scholar 

  17. Shuster A, Osherov N, Rosenberg M. Alcohol-mediated haemolysis in yeast. Yeast. 2004;21:1335–42. doi:10.1002/yea.1183.

    Article  CAS  PubMed  Google Scholar 

  18. Narayanan NS, Rao BS. Interaction between cigarette smoke condensate and radiation for the induction of genotoxic effects in yeast. Mutat Res. 1988;208:45–9. doi:10.1016/0165-7992(88)90019-X.

    Article  CAS  PubMed  Google Scholar 

  19. Gaworski CL, Dozier MM, Eldridge SR, Morrissey R, Rajendran N, Gerhart JM. Cigarette smoke vapor-phase effects on the rat upper respiratory tract. Inhalation Toxicol. 1998;10:857–73. doi:10.1080/089583798197420.

    Article  CAS  Google Scholar 

  20. Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R. Quantitative puff-by-puff-resolved characterization of selected toxic compounds in cigarette mainstream smoke. Chem Res Toxicol. 2006;19:511–20. doi:10.1021/tx050220w.

    Article  CAS  PubMed  Google Scholar 

  21. Mercer BA, Kolesnikova N, Sonett J, D’Armiento J. Extracellular regulated kinase/mitogen activated protein kinase is up-regulated in pulmonary emphysema and mediates matrix metalloproteinase-1 induction by cigarette smoke. J Biol Chem. 2004;279:17690–6. doi:10.1074/jbc.M313842200.

    Article  CAS  PubMed  Google Scholar 

  22. John L, Sharma G, Chaudhuri SP, Pillai B. Cigarette smoke extract induces changes in growth and gene expression of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2005;338:1578–86. doi:10.1016/j.bbrc.2005.10.122.

    Article  CAS  PubMed  Google Scholar 

  23. Navarro-Garcia F, Eisman B, Roman E, Nombela C, Pla J. Signal transduction pathways and cell-wall construction in Candida albicans. Med Mycol. 2001;39:87–100.

    CAS  PubMed  Google Scholar 

  24. Roman E, Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol. 2005;25:10611–27. doi:10.1128/MCB.25.23.10611-10627.2005.

    Article  CAS  PubMed  Google Scholar 

  25. Chauhan N, Latge JP, Calderone R. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol. 2006;4:435–44. doi:10.1038/nrmicro1426.

    Article  CAS  PubMed  Google Scholar 

  26. Monge RA, Roman E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiology. 2006;152:905–12. doi:10.1099/mic.0.28616-0.

    Article  CAS  PubMed  Google Scholar 

  27. Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhauser J. Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun. 2002;70:921–7. doi:10.1128/IAI.70.2.921-927.2002.

    Article  CAS  PubMed  Google Scholar 

  28. Samaranayake YH, Dassanayake RS, Jayatilake JA, Cheung BP, Yau JY, Yeung KW, et al. Phospholipase B enzyme expression is not associated with other virulence attributes in Candida albicans isolates from patients with human immunodeficiency virus infection. J Med Microbiol. 2005;54:583–93. doi:10.1099/jmm.0.45762-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted using intramural funds from The Pontifical Catholic University of Paraná (PUCPR) and The University of Hong Kong (HKU). It was part of the Scientific Initiation Program of F·B.B. that was granted by the National Council of Technological and Scientific Development (CNPq). D.B. is a research fellow supported by the Scientific Initiation Program of PUCPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edvaldo Antonio Ribeiro Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baboni, F.B., Barp, D., de Azevedo Izidoro, A.C.S. et al. Enhancement of Candida albicans Virulence After Exposition to Cigarette Mainstream Smoke. Mycopathologia 168, 227–235 (2009). https://doi.org/10.1007/s11046-009-9217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9217-5

Keywords

Navigation