Skip to main content
Log in

AFLP analysis and zebra disease resistance identification of 40 sisal genotypes in China

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sisal is the most important fiber crop in tropical and subtropical areas in China and the world. Zebra disease is a serious threat to the main cultivar Agave hybrid No.11648 (H.11648) worldwide. To select germplasm materials with zebra disease resistance for breeding, the fluorescent amplified fragment length polymorphism (AFLP) technique was used to make a cluster analysis of the genetic relationships of 40 sisal genotypes grown in China, and Phytophthora nicotianae was used to inoculate the 40 genotypes to identify their resistance to zebra disease. As a result, the similarity coefficient among 40 sisal genotypes was found to be 0.44–0.83 and the 40 genotypes show different levels of disease resistance. According to the AFLP analysis, the disease resistance and chromosomal ploidy, it can be reasoned that, A. attenuata var. marginata, Dong 109, Nan ya 1 and A. attenuata are suitable for hybridization with H.11648 to breed a new disease-resistant variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Good-Avila SV, Souza V, Gaut BS, Eguiarte LE (2006) Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci USA 103:9124–9129

    Article  PubMed  CAS  Google Scholar 

  2. Lacerda MRB, Passos MAA, Rodrigues JJV, Levy P (2006) Características físicas e químicas de substancias à base de pó de coco e resíduo de sisal para a produção de mudas de sabiá (Mimosa caesalpinaefolia Benth). Rev Árvore 30:163–170

    Article  Google Scholar 

  3. Barreto AF (2003) Efeitos do emprego de sucos de agave no tratamento de sementes, controle do ácaro rajado [Tetranychus urticae (Koch, 1836)] e fitotoxidade em algodoeiro (Gossypium hirsutum L. r. latifolium Hutch). Dissertation, Federal University of Paraíba, Brazil

  4. Faria MMS, Jaeger SMPL, Oliveira GJC, Oliveira RL, Ledo CAS, Silva AM, Lopes NCM, Santana FS (2008) Composição bromatológica do co-produto do desfibramento do sisal submetido à autofermentação. Magistra 20:30–35

    Google Scholar 

  5. Pizarro APB, Oliveira Filho AM, Parente JP, Melo MTV, Santos CE, Lima PR (1999) O aproveitamento do resíduo da indústria do sisal no controle de larvas de mosquitos. Rev Soc Bras Med Trop 32:23–29

    Article  PubMed  CAS  Google Scholar 

  6. Jener DG, Santos, Alexsandro B, Alice F. Silva (2009) Antimicrobial activity of Agave sisalana. Afr J Biotechnol 8(22):6181–6184

  7. Valenzuela A (1997) El agave tequilero, su cultivo e industria. Litteris Editores, Mexico, pp 1–204

    Google Scholar 

  8. Rodriguez-Garay B, Lomeli-Sencion JA, Tapia-Campos E (2009) Morphological and molecular diversity of Agave tequilana Weber var. Azul and Agave angustifolia Haw var. Lineno. Ind Crop Prod 29:220–228

    Article  CAS  Google Scholar 

  9. Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryza determined by analysis of nuclear RFLPs. Theor Appl Genet 83:565–581

    Article  Google Scholar 

  10. Vos P, Hogers R, Bleeder M (1995) AFLP—a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  PubMed  CAS  Google Scholar 

  11. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and finger printing. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  12. Infante D, Gonza′lez G, Peraza-Echeverrı′a L (2003) A sexual genetic variability in Agave fourcroydes. Plant Sci 164:223–230

    Article  CAS  Google Scholar 

  13. Gil-Vegaa K, Dı′az C, Nava-Cedillo A, Simpson J (2006) AFLP analysis of Agavet equilana varieties. Plant Sci 170:904–909

    Article  Google Scholar 

  14. Fang J, Twito T, Zhang Z, Chao CT (2006) Genetic relationships among fruiting-mei (Prunus mume Sieb.et Zucc.) cultivars evaluated with AFLP and SNP markers. Genome 49:1256–1264

    Article  PubMed  CAS  Google Scholar 

  15. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  16. Keb-llanes M, Gonzalez G, Chi-Manzanero B (2002) A rapid and simple method for small-scale DNA extraction in Agavaceae and other tropical plants. Plant Mol Biol Rep 20:299a–299e

    Article  CAS  Google Scholar 

  17. Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  18. Rohlf FJ (1998) NTSYSpc numerical taxonomy and multivariate analysis system. Exeter Software, Setauket

    Google Scholar 

  19. Jamia SK, Clark GB, Turlapati SA (2008) Ectopic expression of a nannexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco, plant physiology and biochemistry. doi:10.1016/j.plaphy.2008.07.006

  20. Tang QY (1997) Data processing system. Chinese Agricultural Press, Beijing

    Google Scholar 

  21. Rani V, Parida A, Raina SN (1995) Random amplified polymorphic DNA (RAPD) markers for genetics analysis in micropropagated plants of Populus deltoids Marsh. Plant Cell Rep 14:459–462

    Article  CAS  Google Scholar 

  22. Torres-Moran M, Escoto-Delgadillo M, Molina-Moret S, Rivera-Rodrıguez DM (2010) Assessment of genetic fidelity among Agave tequilana plants propagated asexually via rhizomes versus invitro culture. Plant Cell Tissue Organ Cult 103:403–409

    Article  Google Scholar 

  23. Sanchez-Teyer F, Moreno-Salazar S, Esqueda M, Barraza A, Robert ML (2009) Genetic variability of wild Agave angustifolia populations: a basic study for conservation. J Arid Environ 73:611–616

    Article  Google Scholar 

  24. Lingling Lv, Sun G, Xie J, Zang X, Yulin H, Jun D (2009) Determination of chromosomal ploidy in Agave ssp. Afr J Biotechnol 8(20):5248–5252

Download references

Acknowledgments

This study was supported by National Nonprofit Institute Research Grant of CATAS-ITBB (No. 0827, 0828), Ministry of Agriculture Foundation 948 (No. 2010-Z6), China Agriculture Research System (CARS-19-E17) and the Natural Science Foundation of Hai Nan (No. 80510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexian Yi.

Additional information

Jianming Gao, Luoping, and Chaoming Guo contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Supplementary material 2 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Luoping, Guo, C. et al. AFLP analysis and zebra disease resistance identification of 40 sisal genotypes in China. Mol Biol Rep 39, 6379–6385 (2012). https://doi.org/10.1007/s11033-012-1459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1459-5

Keywords

Navigation