Skip to main content
Log in

Expression QTLs: applications for crop improvement

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In the past, plant breeders dealt with complex agronomic traits in crops, such as drought, pest resistance, yield, and standability, through field observations and standard breeding practices. The evolution to molecular breeding has yielded a deeper understanding of the interacting quantitative trait loci (QTLs) of the complex traits and has exposed underlying genetic variation useful in marker-assisted breeding. Current momentum in QTL analysis is toward understanding the genetic regulation of gene expression as studied by the quantification of transcript levels of genes, or expression QTL (eQTL). Large scale microarray studies have elucidated the genetic regulation of entire transcriptomes, in the process known as genetical genomics, and are beginning to build biochemical pathways of interacting genes on the basis of variations in transcript levels. In addition to understanding general patterns of gene expression, these genetical genomic studies are creating caches of information useful for a multitude of applications. As one gene regulates the level of expression of another (trans-acting eQTL), novel upstream or downstream components in gene regulation pathways can be identified. In addition to steady state analysis, the induction of stimuli such as drought can lead to a deeper understanding of gene networks that are activated under such conditions. Correlation of measured transcript levels (eQTL phenotype) with classic QTL phenotypes may suggest functional roles for the allelic variation in gene expression and serve as a predictor of downstream effects on plant development, morphology, and agronomic interest. Finally, the analysis of the activation of particular genes under steady state or external stimuli treatment provides insight into the functionality of endogenous promoters. While promoters used for transgenic expression have been thoroughly analyzed in model systems and model inbred lines, the understanding of agronomically important phenotypes may benefit from the analysis of genetic polymorphisms of trans-acting regulators affecting transgene expression, and therefore can allow for the optimization of expression both of current and future transgenic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benz BF (2001) Archaeological evidence of teosinte domestication from Guila Naquitz, Oaxaca. Proc Natl Acad Sci USA 98:2104–2106

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    CAS  PubMed  Google Scholar 

  • Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5, 700 gene expression traits in yeast. Proc Natl Acad Sci USA 102:1572–1577

    Article  CAS  PubMed  Google Scholar 

  • Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755

    Article  CAS  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Broglie KEL (PA, US), Butler Karlene H (Newark, DE, US), Butruille Marymar G (Urbandale, IA, US), Da Silva Conceicao Alexandre (Wilmington, DE, US), Frey Travis James (Huxley, IA, US), Hawk James A (Newark, DE, US), Jaqueth Jennifer S (Des Moines, IA, US), Jones Elizabeth S (Prole, IA, US), Multani Dilbag Singh (Urbandale, IA, US), Cecilia Wolters, Petra Johanna Christina (Wilmington, DE, US) (2009) Polynucleotides and methods for making plants resistant to fungal pathogens (United States: E.I. du Pont de Nemours and Company, Pioneer Hi-Bred International, Inc., University of Delaware)

  • Brown AF, Juvik JA, Pataky JK (2001) Quantitative trait loci in sweet corn associated with partial resistance to Stewart’s wilt, northern corn leaf blight, and common rust. Phytopathology 91:293–300

    Article  CAS  PubMed  Google Scholar 

  • Carson ML, Stuber CW, Senior ML (2004) Identification and mapping of quantitative trait loci conditioning resistance to southern leaf blight of Maize caused by Cochliobolus Heterostrophus Race O. Phytopathology 94:862–867

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Kendziorski C (2007) A statistical framework for expression quantitative trait loci mapping. Genetics 177:761–771

    Article  PubMed  Google Scholar 

  • Chen Y, Chao Q, Tan G, Zhao J, Zhang M, Ji Q, Xu M (2008) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Chun H, Keles S (2009) Expression quantitative trait Loci mapping with multivariate sparse partial least squares regression. Genetics 182:79–90

    Article  CAS  PubMed  Google Scholar 

  • Cikos S, Bukovska A, Koppel J (2007) Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol 8:113

    Article  PubMed  Google Scholar 

  • Damerval C, De Vienne D (1993) Quantification of dominance for proteins pleiotropically affected by opaque-2 in maize. Heredity 70:38–51

    Article  Google Scholar 

  • de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P, Nieselt-Struwe K, Muchmore E, Varki A, Ravid R, Doxiadis GM, Bontrop RE, Paabo S (2002) Intra- and interspecific variation in primate gene expression patterns. Science 296:340–343

    Article  CAS  PubMed  Google Scholar 

  • Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, Ausema A, Dontje B, Wang X, Breitling R, Jansen RC, de Haan G (2009) Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet 5:e1000692

    Article  PubMed  Google Scholar 

  • Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77

    CAS  PubMed  Google Scholar 

  • Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177

    Article  CAS  PubMed  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  • Jia Z, Xu S (2007) Mapping quantitative trait loci for expression abundance. Genetics 176:611–623

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Ye C, Eskin E (2008) Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. Genetics 180:1909–1925

    Article  CAS  PubMed  Google Scholar 

  • Kendziorski C, Wang P (2006) A review of statistical methods for expression quantitative trait loci mapping. Mamm Genome 17:509–517

    Article  PubMed  Google Scholar 

  • Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci USA 104:1708–1713

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJ, Sulpice R, Gibon Y, Steinhauser MC, Fu J, Koornneef M, Stitt M, Vreugdenhil D (2008) Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biol 9:R129

    Article  PubMed  Google Scholar 

  • Kliebenstein D (2009) Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 60:93–114

    Article  CAS  PubMed  Google Scholar 

  • Kwan T, Benovoy D, Dias C, Gurd S, Provencher C, Beaulieu P, Hudson TJ, Sladek R, Majewski J (2008) Genome-wide analysis of transcript isoform variation in humans. Nat Genet 40:225–231

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JA, Hazendonk E, Prins P, Plasterk RH, Jansen RC, Breitling R, Kammenga JE (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2:e222

    Article  PubMed  Google Scholar 

  • Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–122

    Article  CAS  PubMed  Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2101–2103

    Article  CAS  PubMed  Google Scholar 

  • Ralph J, Guillaumie S, Grabber JH, Lapierre C, Barriere Y (2004) Genetic and molecular basis of grass cell-wall biosynthesis and degradability. III. Towards a forage grass ideotype. C R Biol 327:467–479

    Article  CAS  PubMed  Google Scholar 

  • Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 1:95–104

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Schrag TA, Maurer HP, Melchinger AE, Piepho HP, Peleman J, Frisch M (2007) Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield. Theor Appl Genet 114:1345–1355

    Article  PubMed  Google Scholar 

  • Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lubberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population. BMC Genomics 8:22

    Article  PubMed  Google Scholar 

  • Smirnov DA, Morley M, Shin E, Spielman RS, Cheung VG (2009) Genetic analysis of radiation-induced changes in human gene expression. Nature 459:587–592

    Article  CAS  PubMed  Google Scholar 

  • Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D, Montgomery S, Tavare S, Deloukas P, Dermitzakis ET (2007) Population genomics of human gene expression. Nat Genet 39:1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  PubMed  Google Scholar 

  • West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St Clair DA (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Wheeler HE, Metter EJ, Tanaka T, Absher D, Higgins J, Zahn JM, Wilhelmy J, Davis RW, Singleton A, Myers RM, Ferrucci L, Kim SK (2009) Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging. PLoS Genet 5:e1000685

    Article  PubMed  Google Scholar 

  • Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol 45:329–369

    Article  CAS  PubMed  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129

    Article  CAS  PubMed  Google Scholar 

  • Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35:57–64

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wan XQ, Pan GT (2006) QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. J Appl Genet 47:9–15

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to Dr. Antoni Rafalski for insightful discussion and for providing editorial, scientific and content related support. We would like to thank Dr. Scott Tingey for intellectual and scientific support regarding this review and our research. We would like to thank Andre Beló, Kevin Fengler, and April Leonard for reading this review and their commentary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Holloway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holloway, B., Li, B. Expression QTLs: applications for crop improvement. Mol Breeding 26, 381–391 (2010). https://doi.org/10.1007/s11032-010-9396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9396-2

Keywords

Navigation