Skip to main content
Log in

Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We study theoretically and computationally the incompressible, non-conducting, micropolar, biomagnetic (blood) flow and heat transfer through a two-dimensional square porous medium in an (x,y) coordinate system, bound by impermeable walls. The magnetic field acting on the fluid is generated by an electrical current flowing normal to the xy plane, at a distance l beneath the base side of the square. The flow regime is affected by the magnetization B 0 and a linear relation is used to define the relationship between magnetization and magnetic field intensity. The steady governing equations for x-direction translational (linear) momentum, y-direction translational (linear) momentum, angular momentum (micro-rotation) and energy (heat) conservation are presented. The energy equation incorporates a special term designating the thermal power per unit volume due to the magnetocaloric effect. The governing equations are non-dimensionalized into a dimensionless (ξ,η) coordinate system using a set of similarity transformations. The resulting two point boundary value problem is shown to be represented by five dependent non-dimensional variables, f ξ  (velocity), f η (velocity), g (micro-rotation), E (magnetic field intensity) and θ (temperature) with appropriate boundary conditions at the walls. The thermophysical parameters controlling the flow are the micropolar parameter (R), biomagnetic parameter (N H ), Darcy number (Da), Forchheimer (Fs), magnetic field strength parameter (Mn), Eckert number (Ec) and Prandtl number (Pr). Numerical solutions are obtained using the finite element method and also the finite difference method for Ec=2.476×10−6 and Prandtl number Pr=20, which represent realistic biomagnetic hemodynamic and heat transfer scenarios. Temperatures are shown to be considerably increased with Mn values but depressed by a rise in biomagnetic parameter (N H ) and also a rise in micropolarity (R). Translational velocity components are found to decrease substantially with micropolarity (R), a trend consistent with Newtonian blood flows. Micro-rotation values are shown to increase considerably with a rise in R values but are reduced with a rise in biomagnetic parameter (N H ). Both translational velocities are boosted with a rise in Darcy number as is micro-rotation. Forchheimer number is also shown to decrease translational velocities but increase micro-rotation. Excellent agreement is demonstrated between both numerical solutions. The mathematical model finds applications in blood flow control devices, hemodynamics in porous biomaterials and also biomagnetic flows in highly perfused skeletal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x, y:

coordinates parallele and perpendicular to base of square in Fig. 1

u, v:

x-direction and y-direction translational velocities

κ :

vortex viscosity of biomagnetic, micropolar fluid

k * :

permeability of isotropic porous medium

b * :

Forchheimer inertial (quadratic drag) coefficient

ρ :

density of biomagnetic, micropolar fluid

N :

micro-rotation component (angular velocity of micro-elements)

T :

temperature

ν :

kinematic viscosity

μ 0 :

magnetic property

γ :

micropolar spin-gradient viscosity (gyro-viscosity)

j :

micro-inertia density

c ρ :

specific heat capacity of biomagnetic, micropolar fluid

k f :

thermal conductivity of biomagnetic, micropolar fluid

E * :

magnetic field intensity

T c :

Curie temperature of biomagnetic, micropolar fluid

Da :

Darcy number

Fs :

Forchheimer number

N H :

biomagnetic parameter

R :

dimensionless micropolar vortex viscosity ratio

Rl :

dimensionless micro-inertia density parameter

Mn :

magnetization numberf

ε :

dimensionless temperature ratio

Ec :

Eckert (viscous dissipation) number

Pr :

Prandtl number

References

  1. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122

    ADS  Google Scholar 

  2. Charny CK (1992) Mathematical models of bioheat transfer. Bioengineering Heat Transfer, Special Issue, Adv Heat Transf 22:19–155

    Article  ADS  Google Scholar 

  3. Rubinsky B (1999) Heat transfer in biomedical engineering and biotechnology. In: Proceedings of the 5th ASME/JSME joint thermal engineering conference, AJTE-6528

  4. Charm S, Paltiel B, Kurland GS (1968) Heat transfer coefficients in blood flow. Biorheology 5:133–145

    Google Scholar 

  5. Victor SA, Shah VL (1975) Heat transfer to blood flowing in a tube. Biorheology 12:361–368

    Google Scholar 

  6. Victor SA, Shah VL (1976) Steady state heat transfer to blood flowing in the entrance region of a tube. Int J Heat Mass Transf 19:777–783

    Article  MATH  Google Scholar 

  7. Chato JC (1980) Heat transfer to blood vessels. ASME J Biomech Eng 102:110–118

    ADS  Google Scholar 

  8. Lagendijk JJW (1982) The influence of blood flow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol 27:17–23

    Article  Google Scholar 

  9. Bég OA, Sajid A (2002) CFD modeling of axisymmetric hemodynamics and heat transfer using ADINA. Technical Report, Biomechanics-III, Universidyne Research Consultancy, Bradford University Science Park, Listerhills, Bradford, UK, November 2002

  10. Craciiunescu OI, Clegg ST (1997) Perturbations of large vessels on induced temperature distributions, part A: three-dimensional simulation study. Adv Heat Mass Transf Biotechnol 355:193–198

    Google Scholar 

  11. Craciiunescu OI (1998) Influence of blood vessel networks on hyperthermia-induced temperature distributions. PhD thesis, Mechanical Engineering and Materials Science, Duke University, North Carolina, USA

  12. Kolios MC, Sherar MD, Hunt JW (2003) Large blood vessel cooling in heated tissues: a numerical study. Phys Med Biol 48:4125–4134

    Article  Google Scholar 

  13. Chakravarty S, Sen S (2005) Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries. Korean–Australia J 17(2):47–62

    Google Scholar 

  14. Baish JW (1990) Heat transport by countercurrent blood vessels in the presence of an arbitrary pressure gradient. ASME J Biomech Eng 112:207

    Article  Google Scholar 

  15. Deng ZS, Liu J (2001) Blood perfusion-based model for characterizing the temperature fluctuations in living tissue. Physica A: Stat Mech Appl 300:521–530

    Article  MATH  Google Scholar 

  16. Craciiunescu OI, Clegg ST (2001) Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels. ASME J Biomech Eng 123(5):500–505

    Article  Google Scholar 

  17. Consiglieri L, Santos I, Haemmerich D (2003) Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies. Phys Med Biol 48:4125–4134

    Article  Google Scholar 

  18. Davalos RV, Rubinsky B, Mir LM (2003) Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochem J 61:99–107

    Article  Google Scholar 

  19. Shrivastava D, McKay B, Romer RB (2005) An analytical study of heat transfer in finite tissue with two blood vessels and uniform Dirichlet boundary conditions. ASME J Heat Transf 127(2):179–188

    Article  Google Scholar 

  20. Gafiychuk VV, Lubashevsky IA, Datsko BY (2005) Fast heat propagation in living tissue caused by branching artery network. Phys Rev E 72:051920

    Article  ADS  Google Scholar 

  21. Cokelet GR (1972) The rheology of human blood. In: Fung YC (ed) Biomechanics-its foundations and objectives. Prentice Hall, New York

    Google Scholar 

  22. Skalak R, Chien S (1982) Rheology of blood cells as soft tissues. Biorheology 19:453–461

    Google Scholar 

  23. Secomb TW, Chien S, Jan KM, Skalak R (1983) The bulk rheology of close-packed red blood cells in shear flow. Biorheology 20(3):295–309

    Google Scholar 

  24. Rodkiewicz SP, Kennedy JS (1990) On the application of a constitutive equation for whole human blood. ASME J Biomech Eng 112:199–206

    Article  Google Scholar 

  25. Quemada D (1993) A non-linear Maxwell model of biofluids: application to normal blood. Biorheol J 30:253–265

    Google Scholar 

  26. Srivastava VP (2003) Flow of a couple stress fluid representing blood through stenotic vessels with a peripheral layer. Indian J Pure Appl Math 34(12):1727–1740

    MATH  Google Scholar 

  27. Anand M, Rajagopal KR (2004) A shear-thinning viscoelastic fluid model for describing the flow of blood. Int J Cardiovasc Med Sci 4(2):59–68

    Google Scholar 

  28. Choi HW, Barakat AI (2005) Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Biorheol J 42(6):493–509

    Google Scholar 

  29. Eringen AC (1966) Theory of micropolar fluids. USSR J Math Mech 16(1):909–923

    Google Scholar 

  30. Ariman T, Turk NA, Sylvester ND (1974) On steady pulsatile flow of blood. ASME J Appl Mech 41:1–7

    Google Scholar 

  31. Eringen AC, Kang CK (1976) The effect of microstructure on the rheological properties of blood. Bull Math Biol 38(2):135–159

    MATH  Google Scholar 

  32. Riha P (1977) Poiseuille flow of microthermopolar fluids. Acta Tech CSAV 22(5):602–613

    ADS  Google Scholar 

  33. Chaturani P, Mahajan SP (1982) Poiseuille flow of micropolar fluid with non-zero couple stress at boundary with applications to blood flow. Biorheol J 19(4):507–518

    Google Scholar 

  34. Hogan HA, Henriksen M (1989) An evaluation of a micropolar model for blood flow through an idealized stenosis. J Biomech 22(3):211–218

    Article  Google Scholar 

  35. Muthu P, Kumar BVR, Chandra P (2003) Effect of elastic wall motion on oscillatory flow of micropolar fluid in an annular tube. Arch Appl Mech (Ing Arch) 73(7):481–494

    Article  MATH  Google Scholar 

  36. Atefi Gh, Moosaie A (2005) Analysis of blood flow through arteries using the theory of micropolar fluids. In: Proceedings of the 12th Iranian biomedical engineering conference, Tabriz, Iran, November 2005

  37. Cimpean DS, Pop I, Ingham DB (2006) A problem of steady micropolar flow in a sinusoidal channel. In: SCRA 2006-FIM XIII—thirteenth international conference of the forum for interdisciplinary mathematics on interdisciplinary mathematical and statistical techniques, New University of Lisbon-Tomar Polytechnic Institute, Lisbon-Tomar, Portugal, 1–4 September 2006

  38. Sorek S, Sideman S (1986) A porous medium approach for modelling heart mechanics, B l-D case. Math Biosci 81:14–32

    Google Scholar 

  39. Preziosi L, Farina A (2002) On Darcy’s law for growing porous media. Int J Non-Linear Mech 37:485–491

    Article  MATH  Google Scholar 

  40. Vankan WJ, Huyghe JM, Janssen JD, Huson A, Hacking WJG, Schrenner W (1997) Finite element analysis of blood flow through biological tissue. Int J Eng Sci 35:375–385

    Article  MATH  Google Scholar 

  41. Axtell NK, Moongyu P, Cushman JH (2005) Micromorphic fluid in an elastic porous body: blood flow in tissues with microcirculation. Int J Multiscale Comput Eng 3:1

    Article  Google Scholar 

  42. Takeuchi T, Mizuno T, Higashi T, Yamagishi A, Date M (1995) Orientation of red blood cells in high magnetic field. J Magn Magn Mater 140:1462–1463

    Article  ADS  Google Scholar 

  43. Sud VK, Sekhon GS, Mishra RK (1977) Pumping action on blood by a magnetic field. Bull Math Biol 39:385–390

    Google Scholar 

  44. Wagh DK, Wagh SD (1992) Blood flow considered as magnetic fluid flow. In: Proceedings of physiological fluid dynamics, pp 311–315

  45. Haik Y, Chen JC, Pai VM (1996) Development of biomagnetic fluid dynamics. In: Winoto SH et al (eds) Proceedings of the IX international symposium on transport phenomena in thermal fluids engineering, Singapore, Pacific Centre in Thermal Fluids Engineering, Hawaii USA, June 1996, pp 25–28

  46. Sud VK, Sekhon GS (2003) Blood flow through the human arterial system in the presence of a steady magnetic field. Biophys J 84:2638–2645

    Article  Google Scholar 

  47. Tzirtzilakis EE, Tanoudis GB (2003) Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer. Int J Numer Methods Heat Fluid Flow 13(7):830–848

    Article  MATH  MathSciNet  Google Scholar 

  48. Louckopoulos VC, Tzirtzilakis EE (2004) Biomagnetic channel flow in spatially varying magnetic field. Int J Eng Sci 42:571–590

    Article  Google Scholar 

  49. Bhargava R, Rawat S, Takhar HS, Bég OA (2006) Finite element solutions for biomagnetic micropolar blood flow in a fluid-saturated non-Darcian porous highly-perfused tissue model. In: 5th world congress in biomechanics, Munich, Germany, July 2006

  50. Haik Y, Pai V, Chen CJ (1999) Biomagnetic fluid dynamics. In: Shyy W, Narayanan R (eds) Fluid dynamics at interfaces. Cambridge University Press, Cambridge, pp 439–452

    Google Scholar 

  51. Tzirtzilakis EE (1999) A mathematical model for blood flow in magnetic field. Phys Fluids 17:077103

    Article  ADS  MathSciNet  Google Scholar 

  52. Matsuki H, Yamasawa K, Murakami K (1977) Experimental considerations on a new automatic cooling device using temperature sensitive magnetic fluid. IEEE Trans Magn 13(5):1143–1145

    Article  ADS  Google Scholar 

  53. Loukopoulos VC, Tzirtzilakis EE (2005) Biofluid flow in a channel under the action of a uniform localized magnetic field. Comput Mech 36(5):360–374

    Article  MATH  Google Scholar 

  54. Tzirtzilakis EE, Xenos M, Lockopoulos VC, Kafoussias NG (2006) Turbulent biomagnetic fluid flow in a rectangular channel under the action of a localized magnetic field. Int J Eng Sci 44:1205–1224

    Article  Google Scholar 

  55. Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646

    Article  MATH  Google Scholar 

  56. Dey J, Nath G (1983) Incompressible micropolar fluid flow over a semi-infinite plate. Int J Eng Sci 21(8):967–972

    Article  MATH  Google Scholar 

  57. Reddy JN (1985) An introduction to the finite element method. MacGraw-Hill, New York

    Google Scholar 

  58. Takhar HS, Agarwal RS, Bhargava R, Jain S (1998) Mixed convective non-steady 3-dimensional micropolar fluid flow at a stagnation point. Heat Mass Transf J 33:443–448

    Article  ADS  Google Scholar 

  59. Bhargava R, Kumar L, Takhar HS (2003) Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet. Int J Eng Sci 41:2161–2178

    Article  Google Scholar 

  60. Bég OA, Takhar HS, Bhargava R, Rawat S, Bég TA (2007) Finite element modeling of laminar flow of a third grade fluid in a Darcy–Forchheimer porous medium with suction effects. Int J Appl Mech Eng 12(1):215–233

    Google Scholar 

  61. Khashan SA, Haik Y (2006) Numerical simulation of biomagnetic flow downstream an eccentric stenotic orifice. Phys Fluids 18:11

    Article  Google Scholar 

  62. Haik Y, Chen CJ, Chatterjee J (2002) Numerical simulation of biomagnetic fluid in a channel with thrombus. J Vis 5(2):187–195

    Article  Google Scholar 

  63. Gorla RSR, Takhar HS, Slaouti A (1998) Magnetohydromagnetic free convection boundary layer flow of a thermal micropolar fluid over a vertical plate. Int J Eng Sci 36:315–327

    Article  Google Scholar 

  64. Rosensweig R (1985) Ferrohydrodynamics. MacGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anwar Bég.

Additional information

Dedicated to Professor Y.C. Fung (1919-), Emeritus Professor of Biomechanics, Bioengineering Department, University of California at San Diego, USA for his seminal contributions to biomechanics and physiological fluid mechanics over four decades and his excellent encouragement to the authors, in particular OAB, with computational biofluid dynamics research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bég, O.A., Bhargava, R., Rawat, S. et al. Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium. Meccanica 43, 391–410 (2008). https://doi.org/10.1007/s11012-007-9102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-007-9102-6

Keywords

Navigation