Skip to main content
Log in

Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: aminoguanidine protection

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular endothelium is vulnerable to the attack of glucose-derived oxoaldehydes (glyoxal and methylglyoxal) during diabetes, through the formation of advanced glycation end products (AGEs). Although aminoguanidine (AG) has been shown to protect against the AGE-induced adverse effects, its protection against the glyoxal-induced alterations in vascular endothelial cells (ECs) such as cytotoxicity, barrier dysfunction, and inhibition of angiogenesis has not been reported and we investigated this in the bovine pulmonary artery ECs (BPAECs). The results showed that glyoxal (1–10 mM) significantly induced cytotoxicity and mitochondrial dysfunction in a dose- and time-dependent (4–12 h) fashion in ECs. Glyoxal was also observed to significantly inhibit EC proliferation. The study also revealed that glyoxal induced EC barrier dysfunction (loss of trans-endothelial electrical resistance), actin cytoskeletal rearrangement, and tight junction alterations in BPAECs. Furthermore, the results revealed that glyoxal significantly inhibited in vitro angiogenesis on the Matrigel. For the first time, this study demonstrated that AG significantly protected against the glyoxal-induced cytotoxicity, barrier dysfunction, cytoskeletal rearrangement, and inhibition of angiogenesis in BPAECs. Therefore, AG appears as a promising protective agent in the treatment of AGE-induced vascular endothelial alterations and dysfunction during diabetes, presumably by blocking the reactivity of the sugar-derived dicarbonyls such as glyoxal and preventing the formation of AGEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Abdel-Rahman E, Bolton WK (2002) Pimagedine: a novel therapy for diabetic nephropathy. Expert Opin Investig Drugs 11(4):565–574

    Article  CAS  PubMed  Google Scholar 

  2. Laakso M (1999) Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48(5):937–942

    Article  CAS  PubMed  Google Scholar 

  3. Shangari N, O’Brien PJ (2004) The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 68(7):1433–1442

    Article  CAS  PubMed  Google Scholar 

  4. Yim MB, Yim HS, Lee C, Kang SO, Chock PB (2001) Protein glycation: creation of catalytic sites for free radical generation. Ann N Y Acad Sci 928:48–53

    Article  CAS  PubMed  Google Scholar 

  5. Tan D, Wang Y, Lo CY, Ho CT (2008) Methylglyoxal: its presence and potential scavengers. Asia Pac J Clin Nutr 17:261–264

    CAS  PubMed  Google Scholar 

  6. Hartog JW, Voors AA, Bakker SJ, Smit AJ, van Veldhuisen DJ (2007) Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 9(12):1146–1155

    Article  CAS  PubMed  Google Scholar 

  7. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116

    Article  CAS  PubMed  Google Scholar 

  8. Lum H, Roebuck KA (2001) Oxidant stress and endothelial dysfunction. Am J Physiol Cell Physiol 280(4):C719–C741

    CAS  PubMed  Google Scholar 

  9. Desai K, Wu L (2007) Methylglyoxal and advanced glycation endproducts: new therapeutic horizons? Recent Pat Cardiovasc Drug Discov 2(2):89–99

    Article  CAS  PubMed  Google Scholar 

  10. Thornalley PJ (2003) Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 419:31–40

    Article  CAS  PubMed  Google Scholar 

  11. Chang T, Wu L (2006) Methylglyoxal, oxidative stress, and hypertension. Can J Physiol Pharmacol 84:1229–1238

    Article  CAS  PubMed  Google Scholar 

  12. Grossin N, Wautier JL (2007) Protein glycation and endothelium dysfunction. J Soc Biol 201(2):175–184

    Article  CAS  PubMed  Google Scholar 

  13. Bourajjaj M, Stehouwer CDA, van Hinsbergh VWM, Schalkwijk CG (2003) Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem Soc Trans 31:1400–1402

    Article  CAS  PubMed  Google Scholar 

  14. Ravelojaona V, Peterszegi G, Molinari J, Gesztesi JL, Robert L (2007) Demonstration of the cytotoxic effect of advanced glycation endproducts (AGEs). J Soc Biol 201(2):185–188

    Article  CAS  PubMed  Google Scholar 

  15. Varadharaj S, Steinhour E, Hunter MG, Watkins T, Baran CP, Magalang U et al (2006) Vitamin C-induced activation of phospholipase D in lung microvascular endothelial cells: regulation by MAP kinases. Cell Signal 18:1396–1407

    Article  CAS  PubMed  Google Scholar 

  16. Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy M et al (2007) Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int J Toxicol 26:57–69

    Article  CAS  PubMed  Google Scholar 

  17. Parinandi NL, Sharma A, Eubank TD, Kaufman BF, Kutala VK, Marsh CB et al (2007) Nitroaspirin (NCX-4016), an NO donor, is antiangiogenic through induction of loss of redox-dependent viability and cytoskeletal reorganization in endothelial cells. Antioxid Redox Signal 9(11):1837–1849

    Article  CAS  PubMed  Google Scholar 

  18. Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta 1588(1):94–101

    CAS  PubMed  Google Scholar 

  19. Madesh M, Bhaskar L, Balasubramanian KA (1997) Enterocyte viability and mitochondrial function after graded intestinal ischemia and reperfusion in rats. Mol Cell Biochem 167(1–2):81–87

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128(1):63–72

    Article  CAS  PubMed  Google Scholar 

  21. Reddy VP, Beyaz A (2006) Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today 11(13–14):646–654

    Article  CAS  PubMed  Google Scholar 

  22. Yin F, Watsky MA (2005) LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Invest Ophthalmol Vis Sci 46(6):1927–1933

    Article  CAS  PubMed  Google Scholar 

  23. Bogatcheva NV, Verin AD (2008) The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res 76(3):202–207

    Article  CAS  PubMed  Google Scholar 

  24. Chiang ET, Camp SM, Dudek SM, Brown ME, Usatyuk PV, Zaborina O et al. (2008) Protective effects of high-molecular weight polyethylene glycol (PEG) in human lung endothelial barrier regulation: role of actin cytoskeletal rearrangement. Microvasc Res Dec 11. [Epub ahead of print]

  25. Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123:134–145

    Article  CAS  PubMed  Google Scholar 

  26. Fasano A (2000) Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Ann N Y Acad Sci 915:214–222

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Gong B, Yang Y, Awasthi YC, Woods M, Boor PJ (2007) Glutathione-S-transferase protects against oxidative injury of endothelial cell tight junctions. Endothelium 14(6):333–343

    Article  CAS  PubMed  Google Scholar 

  28. Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36(7):1206–1237

    Article  CAS  PubMed  Google Scholar 

  29. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23(1–2):125–150

    CAS  PubMed  Google Scholar 

  30. Asami J, Odani H, Ishii A, Oide K, Sudo T, Nakamura A et al (2006) Suppression of AGE precursor formation following unilateral ureteral obstruction in mouse kidneys by transgenic expression of alpha-dicarbonyl/l-xylulose reductase. Biosci Biotechnol Biochem 70(12):2899–2905

    Article  CAS  PubMed  Google Scholar 

  31. Triggle CR (2008) The early effects of elevated glucose on endothelial function as a target in the treatment of type 2 diabetes. Timely Top Med Cardiovasc Dis 4:12:E3

    Google Scholar 

  32. Meeuwisse-Pasterkamp SH, van der Klauw MM, Wolffenbuttel BH (2008) Type 2 diabetes mellitus: prevention of macrovascular complications. Expert Rev Cardiovasc Ther 6(3):323–341

    Article  CAS  PubMed  Google Scholar 

  33. Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3(6):853–876

    CAS  PubMed  Google Scholar 

  34. Vasdev S, Gill V, Singai P (2007) Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic implications. Cell Biochem Biophys 49(1):48–63

    Article  CAS  PubMed  Google Scholar 

  35. Esper RJ, Vilarino JO, Machado RA, Paragano A (2008) Endothelial dysfunction in normal and abnormal glucose metabolism. Adv Cardiol 45:17–43

    Article  CAS  PubMed  Google Scholar 

  36. Smit AJ, Hartog JW, Voors AA, van Veldhuisen DJ (2008) Advanced glycation endproducts in chronic heart failure. Ann N Y Acad Sci 1126:225–230

    Article  CAS  PubMed  Google Scholar 

  37. Shangari N, Bruce WR, Poon R, O’Brien PJ (2003) Toxicity of glyoxals-role of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem Soc Trans 31:1390–1393

    Article  CAS  PubMed  Google Scholar 

  38. Ruggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wiernsperger N (1999) Reaction of metformin with dicarbonyl compounds. Possible implications in the inhibition of advanced glycation end product formation. Biochem Pharmacol 58(11):1765–1773

    Article  CAS  PubMed  Google Scholar 

  39. Wells-Knetch KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW (1995) Mechanism of autoxidative glycosylation: Identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 34:3702–3709

    Article  Google Scholar 

  40. Lee J, Zen Q, Ozaki H, Wang L, Hand AR, Hla T et al (2006) Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem 281(39):29190–29200

    Article  CAS  PubMed  Google Scholar 

  41. Thornalley PJ (2007) Endogenous alpha-oxoaldehydes and formation of protein and nucleotide advanced glycation end products in tissue damage. Novartis Found Symp 285:229–243

    Article  CAS  PubMed  Google Scholar 

  42. Schoneich C (2006) Protein modification in aging: an update. Exp Gerontol 41:807–812

    Article  PubMed  CAS  Google Scholar 

  43. Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  CAS  PubMed  Google Scholar 

  44. Wautier JL, Wautier MP (2001) Blood cells and vascular cell interactions in diabetes. Clin Hemorheol Microcirc 25(2):49–53

    CAS  PubMed  Google Scholar 

  45. Jakus V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53:131–142

    CAS  PubMed  Google Scholar 

  46. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  CAS  PubMed  Google Scholar 

  47. Wu L (2006) Is methylglyoxal a causative factor for hypertension development? Can J Physiol Pharmacol 84:129–139

    Article  CAS  PubMed  Google Scholar 

  48. Berlanga J, Cibrian D, Guillen I, Freyre F, Alba JS, Lopez-Saura P et al (2005) Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci 109:83–95

    Article  CAS  PubMed  Google Scholar 

  49. Tan KC, Chow WS, Ai VH, Metz C, Bucala R, Lam KS (2002) Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care 25(6):1055–1059

    Article  CAS  PubMed  Google Scholar 

  50. Giardino I, Edelstein D, Brownlee M (1996) BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J Clin Invest 97(6):1422–1428

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt AM, Mora R, Cao R, Yan S-D, Brett J, Ramakrishnan R et al (1994) The endothelial cell binding site for advanced glycation end products consists of a complex: an integral membrane protein and a lactoferrin-like polypeptide. J Biol Chem 269(13):9882–9888

    CAS  PubMed  Google Scholar 

  52. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS et al (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269(13):9889–9897

    CAS  PubMed  Google Scholar 

  53. Wautier JL, Wautier MP, Schmidt AM, Anderson GM, Hori O, Zoukourian C et al (1994) Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc Natl Acad Sci USA 91:7742–7746

    Article  CAS  PubMed  Google Scholar 

  54. Duckworth WC (2001) Hyperglycemia and cardiovascular disease. Curr Atheroscler Rep 5:383–391

    Article  Google Scholar 

  55. Guerci B, Kearney-Schwartz A, Bohme P, Zannad F, Drouin P (2001) Endothelial dysfunction and type 2 diabetes. Part 1: physiology and methods for exploring the endothelial function. Diabetes Metab 4(1):425–434

    Google Scholar 

  56. Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R et al (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. J Clin Invest 97(1):238–243

    Article  CAS  PubMed  Google Scholar 

  57. Nishizawa Y, Koyama H (2008) Endogenous secretory receptor for advanced glycation end-products and cardiovascular disease in end-stage renal disease. J Ren Nutr 18(1):76–82

    Article  PubMed  Google Scholar 

  58. Glomb MA, Monnier VM (1995) Mechanism of protein modification by glyoxal and glycoaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 279(17):10017–10026

    Google Scholar 

  59. Guo XH, Huang QB, Chen B, Wang SY, Hou FF, Fu N (2005) Mechanism of advanced glycation end products-induced hyperpermeability in endothelial cells. Acta Physiologica Sinica 57(2):205–210

    CAS  PubMed  Google Scholar 

  60. Guo XH, Huang QB, Chen B, Wang SY, Li Q, Zhu YJ et al (2006) Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. APMIS 113:874–883

    Article  Google Scholar 

  61. Otero K, Martinez F, Beltran A, Gonzalez D, Herrera B, Quintero G et al (2001) Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 359:567–574

    Article  CAS  PubMed  Google Scholar 

  62. Duraisamy Y, Slevin M, Smith N, Bailey J, Zweit J, Smith C et al (2001) Effect of glycation on basic fibroblast growth factor induced angiogenesis and activation of associated signal transduction pathways in vascular endothelial cells: possible relevance to wound healing in diabetes. Angiogenesis 4:277–288

    Article  CAS  PubMed  Google Scholar 

  63. Akhand AA, Hossain K, Mitsui H, Kato M, Miyata T, Inagi R et al (2001) Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic Biol Med 31(1):20–30

    Article  CAS  PubMed  Google Scholar 

  64. De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185

    Article  PubMed  Google Scholar 

  65. Mistry N, Podmore I, Cooke M, Butler P, Griffiths H, Herbert K et al (2003) Novel monoclonal antibody recognition of oxidative DNA damage adduct, deoxycytidine-glyoxal. Lab Invest 83(2):241–250

    CAS  PubMed  Google Scholar 

  66. Roberts MJ, Wondrak GT, Laurean DC, Jacobson MK, Jacobson EL (2003) DNA damage by carbonyl stress in human skin cells. Mutat Res 522(1–2):45–56

    CAS  PubMed  Google Scholar 

  67. Nagaraj RH, Oya-Ito T, Bhat M, Liu B (2005) Dicarbonyl stress and apoptosis of vascular cells: prevention by alphaB-crystallin. Ann N Y Acad Sci 1043:158–165

    Article  CAS  PubMed  Google Scholar 

  68. Kasper M, Roehlecke C, Witt M, Fehrenbach H, Hofer A, Miyata T et al (2000) Induction of apoptosis by glyoxal in human embryonic lung epithelial cell line L132. Am J Respir Cell Mol Biol 23(4):485–491

    CAS  PubMed  Google Scholar 

  69. Reber F, Kasper M, Siegner A, Kniep E, Seigel G, Funk RH (2002) Alteration of the intracellular pH and apoptosis induction in a retinal cell line by the AGE-inducing agent glyoxal. Graefes Arch Clin Exp Ophthalmol 240(12):1022–1032

    Article  CAS  PubMed  Google Scholar 

  70. Cervantes-Laurean D, Roberts MJ, Jacobson EL, Jacobson MK (2005) Nuclear proteasome activation and degradation of carboxymethylated histones in human keratinocytes following glyoxal treatment. Free Radic Biol Med 38:786–795

    Article  CAS  PubMed  Google Scholar 

  71. Peyroux J, Sternberg M (2006) Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathol Biol 54:405–419

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grant HL 067176-05, EB 004031, DK076566 and Dorothy M. Davis Heart and Lung Research Institute funds. Excellent technical support provided by Ms. Jessica N. Mazerik and Ms. Valorie Ciapala is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimham L. Parinandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sliman, S.M., Eubank, T.D., Kotha, S.R. et al. Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: aminoguanidine protection. Mol Cell Biochem 333, 9–26 (2010). https://doi.org/10.1007/s11010-009-0199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0199-x

Keywords

Navigation