Skip to main content

Advertisement

Log in

Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The type 1 insulin-like growth factor receptor (IGF-1R) is essential for tumorigenicity, tumor proliferation, and protection from apoptosis. IGF-1R overexpression has been found in many human cancers including osteosarcoma. To explore its possibility as a therapeutic target for the treatment of osteosarcoma, lentivirus-mediated siRNA was employed to downregulate endogenous IGF-1R expression to study the function of IGF-1R in tumorigenesis and radioresistance of osteosarcoma cells. The IGF-1R expression was persistently and markedly reduced by lentivirus-mediated RNAi. Downregulation of IGF-1R expression in osteosarcoma cells significantly suppressed their growth rates in vitro and reduced the potential of tumorigenicity in vivo. Moreover, the specific downregulation arrested cells in G0/G1 phase of cell cycle and also induced apoptosis which correlated with the activation of Caspase-3. Furthermore, we also observed that suppression of IGF-1R could reduce the invasiveness of osteosarcoma cells and enhance their radiosensitivity. Our study suggested that lentivirus-mediated RNAi silencing targeting IGF-1R could induce potent antitumor activity and radiosensitizing activity in human osteosarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bertoni F, Bacchini P (1998) Classification of bone tumors. Eur J Radiol 27:S74–S76. doi:10.1016/S0720-048X(98)00046-1

    Article  PubMed  Google Scholar 

  2. Weber K, Damron TA, Frassica FJ et al (2008) Malignant bone tumors. Instr Course Lect 57:673–688

    PubMed  Google Scholar 

  3. Bielack S, Carrle D, Jost L et al (2008) Osteosarcoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19:ii94–ii96. doi:10.1093/annonc/mdn102

    Article  PubMed  Google Scholar 

  4. Ilić I, Manojlović S, Cepulić M et al (2004) Osteosarcoma and Ewing’s sarcoma in children and adolescents: retrospective clinicopathological study. Croat Med J 45:740–745

    PubMed  Google Scholar 

  5. Adams TE, Epa VC, Garrett TP et al (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 57:1050–1093. doi:10.1007/PL00000744

    Article  PubMed  CAS  Google Scholar 

  6. Nguyen TT, Sheppard AM, Kaye PL et al (2007) IGF-I and insulin activate mitogen-activated protein kinase via the type 1 IGF receptor in mouse embryonic stem cells. Reproduction 134:41–49. doi:10.1530/REP-06-0087

    Article  PubMed  CAS  Google Scholar 

  7. Pass HI, Mew DJ, Carbone M et al (1996) Inhibition of hamster mesothelioma tumorigenesis by an antisense expression plasmid to the insulin-like growth factor-1 receptor. Cancer Res 56:4044–4048

    PubMed  CAS  Google Scholar 

  8. Dziadziuszko R, Camidge DR, Hirsch FR (2008) The insulin-like growth factor pathway in lung cancer. J Thorac Oncol 3:815–818

    PubMed  Google Scholar 

  9. Lee CY, Jeon JH, Kim HJ et al (2008) Clinical significance of insulin-like growth factor-1 receptor expression in stage I non-small-cell lung cancer: immunohistochemical analysis. Korean J Intern Med 23:116–120. doi:10.3904/kjim.2008.23.3.116

    Article  PubMed  Google Scholar 

  10. Belinsky MG, Rink L, Cai KQ et al (2008) The insulin-like growth factor system as a potential therapeutic target in gastrointestinal stromal tumors. Cell Cycle 7:2949–2955

    PubMed  CAS  Google Scholar 

  11. Steller MA, Delgado CH, Bartels CJ et al (1996) Overexpression of the insulin-like growth factor-1 receptor and autocrine stimulation in human cervical cancer cells. Cancer Res 56:1761–1765

    PubMed  CAS  Google Scholar 

  12. All-Ericsson C, Girnita L, Seregard S et al (2002) Insulin-like growth factor-1 receptor in uveal melanoma: a predictor for metastatic disease and a potential therapeutic target. Investig Ophthalmol Vis Sci 43:1–8

    Google Scholar 

  13. Al Sarakbi W, Chong YM, Williams SL et al (2006) The mRNA expression of IGF-1 and IGF-1R in human breast cancer: association with clinico-pathological parameters. J Carcinog 5:16. doi:10.1186/1477-3163-5-16

    Article  PubMed  CAS  Google Scholar 

  14. Saikali Z, Setya H, Singh G et al (2008) Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells. Cancer Cell Int 8:10. doi:10.1186/1475-2867-8-10

    Article  PubMed  CAS  Google Scholar 

  15. Karagiannis TC, El-Osta A (2004) siRNAs: mechanism of RNA interference, in vivo and potential clinical applications. Cancer Biol Ther 3:1069–1074

    Article  PubMed  CAS  Google Scholar 

  16. Tiscornia G, Singer O, Ikawa M et al (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848. doi:10.1073/pnas.0437912100

    Article  PubMed  CAS  Google Scholar 

  17. Malashicheva AB, Kanzler B, Tolkunova EN et al (2008) The application of lentiviral vectors for tissue-specific gene manipulations. Tsitologiia 50:370–375

    PubMed  CAS  Google Scholar 

  18. Sinn PL, Arias AC, Brogden KA et al (2008) Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J Virol 82:10684–10692. doi:10.1128/JVI.00227-08

    Article  PubMed  CAS  Google Scholar 

  19. Chou AJ, Geller DS, Gorlick R (2008) Therapy for osteosarcoma: where do we go from here? Paediatr Drugs 10:315–327. doi:10.2165/00148581-200810050-00005

    Article  PubMed  Google Scholar 

  20. Lamoureux F, Trichet V, Chipoy C et al (2007) Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies. Expert Rev Anticancer Ther 7:169–181. doi:10.1586/14737140.7.2.169

    Article  PubMed  CAS  Google Scholar 

  21. Kohn DB, Anderson WF, Blaese RM (1989) Gene therapy for genetic diseases. Cancer Investig 7:179–192. doi:10.3109/07357908909038283

    Article  CAS  Google Scholar 

  22. Dass CR, Choong PF (2008) Gene therapy for osteosarcoma: steps towards clinical studies. J Pharm Pharmacol 60:405–413. doi:10.1211/jpp.60.4.0001

    Article  PubMed  CAS  Google Scholar 

  23. Lundstrom K (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21:117–122. doi:10.1016/S0167-7799(02)00042-2

    Article  PubMed  CAS  Google Scholar 

  24. Sinn PL, Sauter SL, McCray PB Jr (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Ther 12:1089–1098. doi:10.1038/sj.gt.3302570

    Article  PubMed  CAS  Google Scholar 

  25. Dropulic B (2005) Genetic modification of hematopoietic cells using retroviral and lentiviral vectors: safety considerations for vector design and delivery into target cells. Curr Hematol Rep 4:300–304

    PubMed  CAS  Google Scholar 

  26. White PJ, Fogarty RD, Werther GA et al (2000) Antisense inhibition of IGF receptor expression in HaCaT keratinocytes: a model for antisense strategies in keratinocytes. Antisense Nucleic Acid Drug Dev 10:195–203

    PubMed  CAS  Google Scholar 

  27. Yeh J, Litz J, Hauck P, Ludwig DL et al (2008) Selective inhibition of SCLC growth by the A12 anti-IGF-1R monoclonal antibody correlates with inhibition of Akt. Lung Cancer 60:166–174. doi:10.1016/j.lungcan.2007.09.023

    Article  PubMed  Google Scholar 

  28. Brodt P, Samani A, Navab R (2000) Inhibition of the type I insulin-like growth factor receptor expression and signaling: novel strategies for antimetastatic therapy. Biochem Pharmacol 60:1101–1107. doi:10.1016/S0006-2952(00)00422-6

    Article  PubMed  CAS  Google Scholar 

  29. Kucab JE, Dunn SE (2003) Role of IGF-1R in mediating breast cancer invasion and metastasis. Breast Dis 17:41–47

    PubMed  CAS  Google Scholar 

  30. Ma Z, Dong A, Kong M et al (2007) Silencing of the type 1 insulin-like growth factor receptor increases the sensitivity to apoptosis and inhibits invasion in human lung adenocarcinoma A549 cells. Cell Mol Biol Lett 12:556–572. doi:10.2478/s11658-007-0022-1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are very grateful for the sincere help and technical support by Department of Biochemistry in Nanjing Medicine University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei De.

Additional information

Y.-H. Wang and Z.-X. Wang should be regarded as joint first authors for their equal contributions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Wang, ZX., Qiu, Y. et al. Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells. Mol Cell Biochem 327, 257–266 (2009). https://doi.org/10.1007/s11010-009-0064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0064-y

Keywords

Navigation