Skip to main content
Log in

Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

One of the focuses in current cancer chemoprevention studies is the search for nontoxic chemopreventive agents that inhibit the initiation of malignant transformation. Cancer biomarkers are quantifiable molecules involved in the physiologic or pathologic events occurring between exposure to carcinogens and the development, progression of cancer. Biomarkers may be the consequence of a continuous process, such as increased cell mass, or a discrete event, such as genetic mutation. Analysis of tumor markers can be used as an indicator of tumor response to therapy. Gallic acid is a naturally available polyphenol, possess strong antioxidant activity with a capacity to inhibit the formation of tumors in several cancer models. In the present study, we investigated the antiproliferative effect of gallic acid during diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in male wistar albino rats. DEN treatment resulted in increased levels of aspartate transaminase, alanine transaminase, alkaline phosphatase, acid phosphatase, lactate dehydrogenase, gamma-glutamyltransferase, 5′-nucleotidase, bilirubin, alpha-fetoprotein, carcinoembryonic antigen, argyophillic nucleolar organizing regions, and proliferating cell nuclear antigen. Gallic acid treatment significantly attenuated these alterations and decreased the levels of AgNORs and PCNA. These finding suggests that gallic acid is a potent antiproliferative agent against DEN-induced HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmedin Jemal DVM, Rebecca Siegel MPH, Murray T, Xu J, Thun MJ (2007) Cancer statistics. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  2. El-Serag HB (2004) Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 127:27–34. doi:10.1053/j.gastro.2004.09.013

    Article  Google Scholar 

  3. Paraskevi A, Ronald A (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:1–14. doi:10.1038/nrc1797

    Article  CAS  Google Scholar 

  4. Ramakrishnan G, Balaji Raghavendran HR, Vinodhkumar R, Devaki T (2006) Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chem Biol Interact 161:104–114. doi:10.1016/j.cbi.2006.03.007

    Article  PubMed  CAS  Google Scholar 

  5. Bansal AK, Bansal M, Soni G, Bhatnagar D (2005) Protective role of Vitamin E pre-treatment on N-nitrosodiethylamine induced oxidative stress in rat liver. Chem Biol Interact 156:101–111. doi:10.1016/j.cbi.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  6. Bartsch H, Montesano R (1984) Relevance of nitrosoamines to human cancer. Carcinogenesis 5:1381–1393. doi:10.1093/carcin/5.11.1381

    Article  PubMed  CAS  Google Scholar 

  7. Steinmetz KA, Potter JD (1991) Vegetables, fruits and cancer, I. Epidemiology. Cancer Causes Control 2:325–357. doi:10.1007/BF00051672

    Article  PubMed  CAS  Google Scholar 

  8. Kahkonen MP, Hopia AI, Vuorela HJ et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962. doi:10.1021/jf990146l

    Article  PubMed  CAS  Google Scholar 

  9. Madlener S, Illmer C, Horvath Z et al (2007) Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 245:156–162. doi:10.1016/j.canlet.2006.01.001

    Article  PubMed  CAS  Google Scholar 

  10. Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37:287–303. doi:10.1016/j.freeradbiomed.2004.04.034

    Article  PubMed  CAS  Google Scholar 

  11. Salucci M, Stivala LA, Maiani G, Bugianesi R, Vannini V (2002) Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer 86:1645–1651. doi:10.1038/sj.bjc.6600295

    Article  PubMed  CAS  Google Scholar 

  12. Inoue M, Suzuki R, Koide T, Sakaguchi N, Ogihara Y, Yabu Y (1994) Antioxidant, gallic acid, induces apoptosis in HL- 60RG cells. Biochem Biophys Res Commun 204:898–904. doi:10.1006/bbrc.1994.2544

    Article  PubMed  CAS  Google Scholar 

  13. Kawada M, Ohno Y, Ri Y, Ikoma T, Yuugetu H, Asai T (2001) Anti-tumor effect of gallic acid on LL–2 lung cancer cells transplanted in mice. Anticancer Drug 12:847–852. doi:10.1097/00001813-200111000-00009

    Article  CAS  Google Scholar 

  14. Li L, Ng TB, Gao W, Li W, Fu M, Niu SM (2005) Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. Life Sci 77:230–240. doi:10.1016/j.lfs.2004.12.024

    Article  PubMed  CAS  Google Scholar 

  15. Ramakrishnan G, Augustine TA, Jagan S, Vinodhkumar R, Devaki T (2007) Effect of silymarin on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Exp Oncol 29(1):39–44

    PubMed  CAS  Google Scholar 

  16. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  17. King J (1965) The transferase-alanine and aspartate transaminase. In: King J (ed) Practical clinical enzymology. D Van Nostrand Company Ltd, London, pp 121–138

  18. King J (1965) The phosphohydrolases-acid and alkaline phosphatase. In: King J (ed) Practical clinical enzymology. D Van Nostrand Company Ltd, London, pp 191–208

  19. King J (1965) The dehydrogenases or oxido reductase-lactate dehydrogenase. In: King J (ed) Practical clinical enzymology. D Van Nostrand Company Ltd, London, pp 83–93

  20. Malloy HT, Evelyn KA (1937) The determination of bilirubin with the photoelectric colorimeter. J Biol Chem 119(112):481–490

    CAS  Google Scholar 

  21. Rosalki SB, Rao D (1972) Serum glutamyl transpeptidase activity in alcoholism. Clin Chim Acta 39:41–47. doi:10.1016/0009-8981(72)90297-5

    Article  PubMed  CAS  Google Scholar 

  22. Luly P, Barnabei O, Tria E (1972) Hormonal control in vitro of plasma membrane bound Na+, K+-ATPase of rat liver. Biochim Biophys Acta 282:447–452. doi:10.1016/0005-2736(72)90352-5

    Article  PubMed  CAS  Google Scholar 

  23. Ramakrishnan G, Elinos-Baaez CM, Jagan S et al (2008) Silymarin downregulates COX-2 expression and attenuates hyperlipidemia during NDEA-induced rat hepatocellular carcinoma. Mol Cell Biochem 313(1–2):53–61. doi:10.1007/s11010-008-9741-5

    Article  PubMed  CAS  Google Scholar 

  24. Ploton D, Menager M, Jeannesson P, Himber G, Pigeon F, Adnet JJ (1986) Improvement in the staining and in the visualization of the argyrophilic proteins of the nucleolar organizer regions at the optical level. Histochem J 18:5–14. doi:10.1007/BF01676192

    Article  PubMed  CAS  Google Scholar 

  25. Padmakumaran Nair KG, Deepadevi KV, Arun P et al (1998) Toxic effect of systemic administration of low doses of the plasticizer di-(2-ethylhexyl) phthalate [DEHP] in rats. Indian J Exp Biol 36:264–272

    Google Scholar 

  26. Whittby LG, Perey-Robb IW, Smith AT (1984) Enzymes tests in diagnosis, Lecturer notes in clinical chemistry, 3rd edn. Black Well Scientific Publications, pp 138–169

  27. Lipport M, Papadopoulos N, Javadpour NR (1981) Role of lactate dehydrogenase isoenzymes in testicular cancer. Urology 18:50–53. doi:10.1016/0090-4295(81)90495-7

    Article  Google Scholar 

  28. Kamaraj S, Vinodhkumar R, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T (2007) The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biol Pharm Bull 30(12):2268–2273. doi:10.1248/bpb.30.2268

    Article  PubMed  CAS  Google Scholar 

  29. Thangaraju M, Rameshbabu J, Vasavi H, Ilanchezian S, Vinitha R, Sachdanandam P (1998) The salubrious effect of tamoxifen on serum marker enzymes, glycoproteins lysosomal enzyme level in breast cancer women. Mol Cell Biochem 185:85–94. doi:10.1023/A:1006874005764

    Article  PubMed  CAS  Google Scholar 

  30. Doa TL, Ip C, Rater J (1980) Serum sialyl transferase and 5′ nucleotidase as reliable biomarkers in women with breast cancer. J Natl Cancer Inst 65:529

    Google Scholar 

  31. Anjana J, Monika B, Sangeeta S (2007) Protective effect of Terminalia belerica Roxb and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol 109:214–218. doi:10.1016/j.jep.2006.07.033

    Article  CAS  Google Scholar 

  32. Harper HA (1961) The functions and tests of the liver. Review of physiological chemistry. Lange Medical Publishers, Los Atlos, CA, pp 271–283

    Google Scholar 

  33. Rajkapoor B, Jayakar B, Murugesh N, Sakthisekaran D (2006) Chemoprevention and cytotoxic effect of Bauhinia variegata against N-nitrosodiethylamine induced liver tumors and human cancer cell lines. J Ethnopharmacol 104:407–409. doi:10.1016/j.jep.2005.08.074

    Article  PubMed  CAS  Google Scholar 

  34. Zimmermann H (1992) 5′-nucleotidase: molecular structure and functional aspects. Biochem J 285:345–365

    PubMed  CAS  Google Scholar 

  35. Sadej R, Spychala J, Skladanowski AC (2006) Expression of ecto-5′-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res 16:213–222. doi:10.1097/01.cmr.0000215030.69823.11

    Article  PubMed  CAS  Google Scholar 

  36. Ujházy P, Berleth ES, Pietkiewicz JM et al (1996) Evidence for the involvement of ecto-5′-nucleotidase (CD73) in drug resistance. Int J Cancer 68:493–500. doi:10.1002/(SICI)1097-0215(19961115)68:4<493::AID-IJC15>3.0.CO;2-6

    Article  PubMed  Google Scholar 

  37. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87:161–173. doi:10.1016/S0163-7258(00)00053-X

    Article  PubMed  CAS  Google Scholar 

  38. Pellegrina CD, Padovani G, Mainente F et al (2005) Anti-tumor potential of a gallic acid containing phenolic fraction from Oenothera biennis. Cancer Lett 226:17–25. doi:10.1016/j.canlet.2004.11.033

    Article  PubMed  CAS  Google Scholar 

  39. Yao DF, Dong ZZ, Yao DB et al (2004) Abnormal expression of hepatoma-derived gammaglutamyltransferase subtyping and its early alteration for carcinogenesis of hepatocytes. Hepatobiliary Pancreat Dis Int 3:564–570

    PubMed  CAS  Google Scholar 

  40. Tang QY, Yao DF, Lu JX, Wu XH, Meng XY (1999) Expression and alterations of different molecular form gammaglutamyl transferase and total RNA concentration during the carcinogenesis of rat hepatoma. World J Gastroenterol 5:356–358

    PubMed  CAS  Google Scholar 

  41. Sell S, Becker F, Leffert HL et al (1983) α-Fetoprotein as a marker for early events and carcinoma development during chemical hepatocarcinogenesis. Environ Sci Res 29:271–293

    CAS  Google Scholar 

  42. Endo Y, Kanai K, Oda T et al (1975) Clinical significance of alpha-fetoprotein in hepatitis and liver cirrhosis. Ann N Y Acad Sci 259:234–238. doi:10.1111/j.1749-6632.1975.tb25418.x

    Article  PubMed  CAS  Google Scholar 

  43. Sirri V, Roussel P, Trerè D, Derenzini M, Hernandez-Verdun D (1995) Amount variability of total and individual Ag-NOR proteins in cells stimulated to proliferate. J Histochem Cytochem 43:887–893

    PubMed  CAS  Google Scholar 

  44. Wu WY, Xu Q, Shi LC, Zhang WB (2000) Inhibitory effects of Curcuma aromatica oil on proliferation of hepatoma in mice. World J Gastroenterol 6:216–219

    PubMed  CAS  Google Scholar 

  45. Lin GY, Chen ZL, Lu CM, Li Y, Ping XJ, Huang R (2000) Immunohistochemical study on p53, H-rasp21, c-erbB–2 protein and PCNA expression in HCC tissues of Han and minority ethnic patients. World J Gastroenterol 6:234–238

    PubMed  CAS  Google Scholar 

  46. Kelman Z (1997) PCNA: structure, functions and interactions. Oncogene 14:629–640. doi:10.1038/sj.onc.1200886

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Nalini Rajamannan, Northwestern Universitry, USA for the kind gift of antibody, PCNA. One of the authors Gopalakrishnan Ramakrishnan gratefully acknowledges the Indian Council of Medical Research, New Delhi, India for financial assistance in the form of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiruvengadam Devaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagan, S., Ramakrishnan, G., Anandakumar, P. et al. Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol Cell Biochem 319, 51–59 (2008). https://doi.org/10.1007/s11010-008-9876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9876-4

Keywords

Navigation