Skip to main content
Log in

A study of tropomyosin’s role in cardiac function and disease using thin-filament reconstituted myocardium

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Tropomyosin (Tm) is the key regulatory component of the thin-filament and plays a central role in the cardiac muscle’s cooperative activation mechanism. Many mutations of cardiac Tm are related to hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular noncompaction (LVNC). Using the thin-filament extraction/reconstitution technique, we are able to incorporate various Tm mutants and protein isoforms into a muscle fiber environment to study their roles in Ca2+ regulation, cross-bridge kinetics, and force generation. The thin-filament reconstitution technique poses several advantages compared to other in vitro and in vivo methods: (1) Tm mutants and isoforms are placed into the real muscle fiber environment to exhibit their effect on a level much higher than simple protein complexes; (2) only the primary and immediate effects of Tm mutants are studied in the thin-filament reconstituted myocardium; (3) lethal mutants of Tm can be studied without causing a problem; and (4) inexpensive. In transgenic models, various secondary effects (myocyte disarray, ECM fibrosis, altered protein phosphorylation levels, etc.) also affect the performance of the myocardium, making it very difficult to isolate the primary effect of the mutation. Our studies on Tm have demonstrated that: (1) Tm positively enhances the hydrophobic interaction between actin and myosin in the “closed state”, which in turn enhances the isometric tension; (2) Tm’s seven periodical repeats carry distinct functions, with the 3rd period being essential for the tension enhancement; (3) Tm mutants lead to HCM by impairing the relaxation on one hand, and lead to DCM by over inhibition of the AM interaction on the other hand. Ca2+ sensitivity is affected by inorganic phosphate, ionic strength, and phosphorylation of constituent proteins; hence it may not be the primary cause of the pathogenesis. Here, we review our current knowledge regarding Tm’s effect on the actomyosin interaction and the early molecular pathogenesis of Tm mutation related to HCM, DCM, and LVNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen PS, Havndrup O, Hougs L, Sorensen KM, Jensen M, Larsen LA, Hedley P, Thomsen AR, Moolman-Smook J, Christiansen M, Bundgaard H (2009) Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum Mutat 30(3):363–370. doi:10.1002/humu.20862

    PubMed  CAS  Google Scholar 

  • Bai F, Weis A, Takeda AK, Chase PB, Kawai M (2011) Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin’s HCM mutations. Biophys J 100(4):1014–1023. doi:10.1016/j.bpj.2011.01.001

    PubMed  CAS  Google Scholar 

  • Bai F, Groth HL, Kawai M (2012) DCM-related tropomyosin mutants E40 K/E54 K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges. PLoS ONE 7(10):e47471. doi:10.1371/journal.pone.0047471

    PubMed  CAS  Google Scholar 

  • Bai F, Caster HM, Pinto JR, Kawai M (2013) Analysis of the molecular pathogenesis of cardiomyopathy-causing cTnT mutants I79N, ΔE96, and ΔK210. Biophys J 104(9):1979–1988. doi:10.1016/j.bpj.2013.04.001

    Google Scholar 

  • Barron JT (1999) Hypertrophic cardiomyopathy. Curr Treat Options Cardiovasc Med 1:277–282

    PubMed  Google Scholar 

  • Barua B, Pamula MC, Hitchcock-DeGregori SE (2011) Evolutionarily conserved surface residues constitute actin binding sites of tropomyosin. Proc Natl Acad Sci USA 108(25):10150–10155. doi:10.1073/pnas.1101221108

    PubMed  CAS  Google Scholar 

  • Barua B, Winkelmann DA, White HD, Hitchcock-DeGregori SE (2012) Regulation of actin-myosin interaction by conserved periodic sites of tropomyosin. Proc Natl Acad Sci USA 109(45):18425–18430. doi:10.1073/pnas.1212754109

    PubMed  CAS  Google Scholar 

  • Behrmann E, Muller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150(2):327–338. doi:10.1016/j.cell.2012.05.037

    PubMed  CAS  Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Therapeut 128(1):191–227. doi:10.1016/j.pharmthera.2010.04.005

    CAS  Google Scholar 

  • Bing W, Knott A, Marston SB (2000a) A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments. Biochemical Journal 350:693–699. doi:10.1042/0264-6021:3500693

    PubMed  CAS  Google Scholar 

  • Bing W, Knott A, Redwood C, Esposito G, Purcell I, Watkins H, Marston S (2000b) Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha -tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cell Cardiol 32(8):1489–1498. doi:10.1006/jmcc.2000.1182

    PubMed  CAS  Google Scholar 

  • Bookwalter CS, Trybus KM (2006) Functional consequences of a mutation in an expressed human alpha-cardiac actin at a site implicated in familial hypertrophic cardiomyopathy. J Biol Chem 281(24):16777–16784. doi:10.1074/jbc.M512935200

    PubMed  CAS  Google Scholar 

  • Borovikav YS, Rysev NA, Karpicheva OE, Redwood CS (2011) Hypertrophic cardiomyopathy-causing Asp175asn and Glu180gly Tpm1 mutations shift tropomyosin strands further towards the open position during the ATPase cycle. Biochem Bioph Res Co 407(1):197–201. doi:10.1016/j.bbrc.2011.02.139

    Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal-muscle. Nature-New Biol 238(82):97

    PubMed  CAS  Google Scholar 

  • Brown JH, Cohen C (2005) Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv Protein Chem 71:121–159. doi:10.1016/S0065-3233(04)71004-9

    PubMed  CAS  Google Scholar 

  • Brown JH, Kim K-H, Jun G, Greenfield NJ, Dominguez R, Volkmann N, Hitchcock-DeGregori SE, Cohen C (2001) Deciphering the design of the tropomyosin molecule. Proc Natl Acad Sci USA 98(15):8496–8501

    PubMed  CAS  Google Scholar 

  • Brown JH, Zhou ZC, Reshetnikova L, Robinson H, Yammani RD, Tobacman LS, Cohen C (2005) Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci USA 102(52):18878–18883. doi:10.1073/pnas.0509269102

    PubMed  CAS  Google Scholar 

  • Chang AN, Potter JD (2005) Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 10(3):225–235. doi:10.1007/s10741-005-5252-6

    PubMed  CAS  Google Scholar 

  • Chang AN, Harada K, Ackerman MJ, Potter JD (2005) Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in α-tropomyosin. J Biol Chem 280:34343–34349

    PubMed  CAS  Google Scholar 

  • Chang B, Nishizawa T, Furutani M, Fujiki A, Tani M, Kawaguchi M, Ibuki K, Hirono K, Taneichi H, Uese K, Onuma Y, Bowles NE, Ichida F, Inoue H, Matsuoka R, Miyawaki T (2011) Noncompaction study c Identification of a novel TPM1 mutation in a family with left ventricular noncompaction and sudden death. Mol Genet Metab 102(2):200–206. doi:10.1016/j.ymgme.2010.09.009

    PubMed  Google Scholar 

  • Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R (1990) Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82(2):507–513

    PubMed  CAS  Google Scholar 

  • Codd MB, Sugrue DD, Gersh BJ, Melton LJ (1989) Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy: a population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 80:564–572

    PubMed  CAS  Google Scholar 

  • Coupland ME, Puchert E, Ranatunga KW (2001) Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate. J Physiol 536(Pt 3):879–891

    PubMed  CAS  Google Scholar 

  • Coviello DA, Maron BJ, Spirito P, Watkins H, Vosberg H-P, Thierfelder L, Schoen FJ, Seidman Seidman CE (1997) Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the α-tropomyosin gene. J Am Coll Cardiol 29(3):635–640

    PubMed  CAS  Google Scholar 

  • Debold EP, Schmitt JP, Patlak JB, Beck SE, Moore JR, Seidman JG, Seidman C, Warshaw DM (2007) Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. Am J Physiol Heart Circulatory Physiol 293(1):H284–H291. doi:10.1152/ajpheart.00128.2007

    CAS  Google Scholar 

  • Earing MG, Ackerman MJ, O’Leary PW (2003) Diastolic ventricular dysfunction as a marker for hypertrophic cardiomyopathy in a family with a novel alpha-tropomyosin mutation. J Am Soc Echocardiog 16(6):698–702. doi:10.1016/S0894-7317(03)00285-2

    Google Scholar 

  • Eaton BL (1976) Tropomyosin Binding to F-Actin Induced by Myosin Heads. Science 192(4246):1337–1339. doi:10.1126/science.131972

    PubMed  CAS  Google Scholar 

  • Elliott P, McKenna WJ (2004) Hypertrophic cardiomyopathy. Lancet 363(9424):1881–1891

    PubMed  CAS  Google Scholar 

  • Fujita H, Kawai M (2002) Temperature effect on isometric tension is mediated by regulatory proteins tropomyosin and troponin in bovine myocardium. J Physiol 539(Pt 1):267–276

    PubMed  CAS  Google Scholar 

  • Fujita H, Yasuda K, Niitsu S, Funatsu T, Ishiwata S (1996) Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle. Biophys J 71:2307–2318

    PubMed  CAS  Google Scholar 

  • Fujita H, Sasaki D, Ishiwata S, Kawai M (2002) Elementary steps of the cross-bridge cycle in bovine myocardium with and without regulatory proteins. Biophys J 82(2):915–928. doi:10.1016/S0006-3495(02)75453-2

    PubMed  CAS  Google Scholar 

  • Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M (2004) The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. J Physiol 556(Pt 2):637–649. doi:10.1113/jphysiol.2003.059956

    PubMed  CAS  Google Scholar 

  • Furch M, Geeves MA, Manstein DJ (1998) Modulation of actin affinity and actomyosin adenosine triphosphatase by charge changes in the myosin motor domain. Biochemistry 37(18):6317–6326. doi:10.1021/Bi972851y

    PubMed  CAS  Google Scholar 

  • Fuster V, Gersh BJ, Giuliani ER, Tajik AJ, Brandenburg RO, Frye RL (1981) The natural history of idiopathic dilated cardiomyopathy. Am J Cardiol 47(3):525–531

    PubMed  CAS  Google Scholar 

  • Garcia-Castro M, Coto E, Reguero JR, Berrazueta JR, Alvarez V, Alonso B, Sainz R, Martin M, Moris C (2009) Mutations in sarcomeric genes MYH7, MYBPC3, TNNT2, TNNI3, and TPM1 in patients with hypertrophic cardiomyopathy. Rev Esp Cardiol 62(1):48–56

    PubMed  Google Scholar 

  • Gillum RF (1986) Idiopathic cardiomyopathy in the United States, 1970–1982. Am Heart J 111(4):752–755

    PubMed  CAS  Google Scholar 

  • Gollapudi SK, Mamidi R, Mallampalli SL, Chandra M (2012) The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. Biophys J 103(5):940–948. doi:10.1016/j.bpj.2012.07.035

    PubMed  CAS  Google Scholar 

  • Gordon AM, Chen Y, Liang B, LaMadrid M, Luo Z, Chase PB (1998) Skeletal muscle regulatory proteins enhance F-actin in vitro motility. Adv Exp Med Biol 453:187–196

    PubMed  CAS  Google Scholar 

  • Grunig E, Tasman JA, Kucherer H, Franz W, Kubler W, Katus HA (1998) Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 31(1):186–194

    PubMed  CAS  Google Scholar 

  • Heeley DH (1994) Investigation of the effects of phosphorylation of rabbit striated-muscle alpha–alpha-tropomyosin and rabbit skeletal-muscle troponin-T. Eur J Biochem 221(1):129–137. doi:10.1111/j.1432-1033.1994.tb18721.x

    PubMed  CAS  Google Scholar 

  • Heeley DA, Moir AJ, Perry SV (1982) Phosphorylation of tropomyosin during development in mammalian striated muscle. FEBS Lett 146(1):115–118

    PubMed  CAS  Google Scholar 

  • Heeley DH, Watson MH, Mak AS, Dubord P, Smillie LB (1989) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle alpha alpha-tropomyosin. J Biol Chem 264(5):2424–2430

    PubMed  CAS  Google Scholar 

  • Heeley DH, Belknap B, White HD (2006) Maximal activation of skeletal muscle thin filaments requires both rigor myosin S1 and calcium. J Biol Chem 281(1):668–676. doi:10.1074/jbc.M505549200

    PubMed  CAS  Google Scholar 

  • Heller MJ, Nili M, Homsher E, Tobacman LS (2003) Cardiomyopathic tropomyosin mutations that increase thin filament Ca2+ sensitivity and tropomyosin N-domain flexibility. J Biol Chem 278(43):41742–41748. doi:10.1074/jbc.M303408200

    PubMed  CAS  Google Scholar 

  • Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MR, Towbin JA (2009) Genetic evaluation of cardiomyopathy–a heart failure society of america practice guideline. J Card Fail 15(2):83–97. doi:10.1016/j.cardfail.2009.01.006

    PubMed  Google Scholar 

  • Hitchcock-DeGregori SE (2008) Tropomyosin: function follows structure. Adv Exp Med Biol 644:60–72

    PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori SE, Song Y, Greenfield NJ (2002) Functions of tropomyosin’s periodic repeats. Biochemistry 41(50):15036–15044

    PubMed  CAS  Google Scholar 

  • Ho CY, Seidman CE (2006) A contemporary approach to hypertrophic cardiomyopathy. Circulation 113(2):e858–e862

    PubMed  Google Scholar 

  • Holmes KC (1995) The actomyosin interaction and its control by tropomyosin. Biophys J 68(4):S2–S7

    Google Scholar 

  • Holmes KC, Schroder RR, Sweeney HL, Houdusse A (2004) The structure of the rigor complex and its implications for the power stroke. Philos T Roy Soc B 359(1452):1819–1828. doi:10.1098/rstb.2004.1566

    CAS  Google Scholar 

  • Holthauzen LM, Correa F, Farah CS (2004) Ca2+-induced rolling of tropomyosin in muscle thin filaments: the alpha- and beta-band hypothesis revisited. J Biol Chem 279(15):15204–15213. doi:10.1074/jbc.M308904200M308904200

    PubMed  CAS  Google Scholar 

  • Huxley HE (1973) Structural changes in actin-containing and myosin-containing filaments during contraction. Cold Spring Harb Sym 37:361–376

    CAS  Google Scholar 

  • Ishii Y, Lehrer SS (1990) Excimer fluorescence of pyrenyliodoacetamide-labeled tropomyosin: a probe of the state of tropomyosin in reconstituted muscle thin filaments. Biochemistry 29(5):1160–1166

    PubMed  CAS  Google Scholar 

  • Jaaskelainen P, Soranta M, Miettinen R, Saarinen L, Pihlajamaki J, Silvennoinen K, Tikanoja T, Laakso M, Kuusisto J (1998) The cardiac beta-myosin heavy chain gene is not the predominant gene for hypertrophic cardiomyopathy in the Finnish population. J Am Coll Cardiol 32(6):1709–1716

    PubMed  CAS  Google Scholar 

  • Jacques AM, Copeland O, Messer AE, Gallon CE, King K, McKenna WJ, Tsang VT, Marston SB (2008) Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle. J Mol Cell Cardiol 45(2):209–216. doi:10.1016/j.yjmcc.2008.05.020

    PubMed  CAS  Google Scholar 

  • Jagatheesan G, Rajan S, Wieczorek DF (2010) Investigations into tropomyosin function using mouse models. J Mol Cell Cardiol 48(5):893–898. doi:10.1016/j.yjmcc.2009.10.003

    PubMed  CAS  Google Scholar 

  • Jongbloed RJ, Marcelis CL, Doevendans PA, Schmeitz-Mulkens JM, Van Dockum WG, Geraedts JP, Smeets HJ (2003) Variable clinical manifestation of a novel missense mutation in the alpha-tropomyosin (TPM1) gene in familial hypertrophic cardiomyopathy. J Am Coll Cardiol 41(6):981–986

    PubMed  CAS  Google Scholar 

  • Karam CN, Warren CM, Rajan S, de Tombe PP, Wieczorek DF, Solaro RJ (2011) Expression of tropomyosin-kappa induces dilated cardiomyopathy and depresses cardiac myofilament tension by mechanisms involving cross-bridge dependent activation and altered tropomyosin phosphorylation. J Muscle Res Cell Motil 31(5–6):315–322. doi:10.1007/s10974-010-9237-2

    PubMed  CAS  Google Scholar 

  • Karibe A, Tobacman LS, Strand J, Butters C, Back N, Bachinski LL, Arai AE, Ortiz A, Roberts R, Homsher E, Fananapazir L (2001) Hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 103(1):65–71

    PubMed  CAS  Google Scholar 

  • Kawai M (2003) What do we learn by studying the temperature effect on isometric tension and tension transients in mammalian striated muscle fibres? J Muscle Res Cell Motil 24(2–3):127–138

    PubMed  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas. Biophys J 59:329–342

    PubMed  CAS  Google Scholar 

  • Kawai M, Ishiwata S (2006) Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation. J Muscle Res Cell Motil 27:455–468

    PubMed  Google Scholar 

  • Kawai M, Saeki Y, Zhao Y (1993) Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res 73(1):35–50

    PubMed  CAS  Google Scholar 

  • Kawai M, Kido T, Vogel M, Fink RH, Ishiwata S (2006) Temperature change does not affect force between regulated actin filaments and heavy meromyosin in single-molecule experiments. J Physiol 574(Pt 3):877–887. doi:10.1113/jphysiol.2006.111708

    PubMed  CAS  Google Scholar 

  • Kawai M, Lu X, Hitchcock-DeGregori SE, Stanton KJ, Wandling Michael W (2009) Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovinemyocardium. J Biophys 2009:1–17

    Google Scholar 

  • Kobayashi T, Jin L, de Tombe PP (2008) Cardiac thin filament regulation. Pflugers Arch 457(1):37–46. doi:10.1007/s00424-008-0511-8

    PubMed  CAS  Google Scholar 

  • Koide M, Carabello BA, Conrad CC, Buckley JM, DeFreyte G, Barnes M, Tomanek RJ, Wei C–C, Dell’Italia LJ, GC IV, Zile MR (1999) Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation. Am J Physiol Heart Circ Physiol 276:H350–H358

    CAS  Google Scholar 

  • Lakdawala NK, Dellefave L, Redwood CS, Sparks E, Cirino AL, Depalma S, Colan SD, Funke B, Zimmerman RS, Robinson P, Watkins H, Seidman CE, Seidman JG, McNally EM, Ho CY (2010) Familial dilated cardiomyopathy caused by an alpha-tropomyosin mutation: the distinctive natural history of sarcomeric dilated cardiomyopathy. J Am Coll Cardiol 55(4):320–329. doi:10.1016/j.jacc.2009.11.017

    PubMed  CAS  Google Scholar 

  • Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66(1):12–21. doi:10.1016/j.cardiores.2004.12.022

    PubMed  CAS  Google Scholar 

  • Lee S, Lu R, Muller-Ehmsen J, Schwinger RH, Brixius K (2010) Increased Ca2+ sensitivity of myofibrillar tension in ischaemic vs dilated cardiomyopathy. Clin Exp Pharmacol Physiol 37(12):1134–1138. doi:10.1111/j.1440-1681.2010.05443.x

    PubMed  CAS  Google Scholar 

  • Lehman W, Craig R (2008) Tropomyosin and the steric mechanism of muscle regulation. Adv Exp Med Biol 644:95–109

    PubMed  CAS  Google Scholar 

  • Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R (2000) Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302(3):593–606. doi:10.1006/jmbi.2000.4080

    PubMed  CAS  Google Scholar 

  • Lehman W, Galinska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388(4):673–681. doi:10.1016/j.jmb.2009.03.060

    PubMed  CAS  Google Scholar 

  • Lehrer SS, Morris EP (1982) Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment-1 atpase. J Biol Chem 257(14):8073–8080

    PubMed  CAS  Google Scholar 

  • Lorenz M, Poole KJV, Popp D, Rosenbaum G, Holmes KC (1995) An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels (Vol 246, Pg 108, 1995). J Mol Biol 249(2):509–519

    CAS  Google Scholar 

  • Lu X, Tobacman LS, Kawai M (2003) Effects of tropomyosin internal deletion Delta23Tm on isometric tension and the cross-bridge kinetics in bovine myocardium. J Physiol 553(Pt 2):457–471. doi:10.1113/jphysiol.2003.053694

    PubMed  CAS  Google Scholar 

  • Lu X, Bryant MK, Bryan KE, Rubenstein PA, Kawai M (2005) Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres. J Physiol 564(Pt 1):65–82. doi:10.1113/jphysiol.2004.078055

    PubMed  CAS  Google Scholar 

  • Lu X, Heeley DH, Smillie LB, Kawai M (2010) The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres. J Muscle Res Cell Motil 31(2):93–109. doi:10.1007/s10974-010-9213-x

    PubMed  CAS  Google Scholar 

  • Ly S, Lehrer SS (2012) Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry-US 51(32):6413–6420. doi:10.1021/Bi3006835

    CAS  Google Scholar 

  • Mak A, Smillie LB, Barany M (1978) Specific phosphorylation at serine-283 of alpha tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle. Proc Natl Acad Sci USA 75(8):3588–3592

    PubMed  CAS  Google Scholar 

  • Marian AJ, Roberts R (2001) The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 33:655–670

    PubMed  CAS  Google Scholar 

  • Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH, Spirito P, Cate FJT, Wigle ED (2003) American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 42:1687–1713

    PubMed  Google Scholar 

  • Marston SB (2011) How do mutations in contractile proteins cause the primary familial cardiomyopathies? J Cardiovasc Transl 4(3):245–255. doi:10.1007/s12265-011-9266-2

    Google Scholar 

  • Martyn DA, Chase PB, Regnier M, Gordon AM (2002) A simple model with myofilament compliance predicts activation dependent crossbridge kinetics in skinned skeletal fibers. Biophys J 83:3425–3434

    PubMed  CAS  Google Scholar 

  • Mathur MC, Chase PB, Chalovich JM (2011) Several cardiomyopathy causing mutations on tropomyosin either destabilize the active state of actomyosin or alter the binding properties of tropomyosin. Biochem Bioph Res Co 406(1):74–78. doi:10.1016/j.bbrc.2011.01.112

    CAS  Google Scholar 

  • McConnell BK, Jones KA, Fatkin D, Arroyo LH, Lee RT, Aristizabal O, Turnbull DH, Georgakopoulos D, Kass D, Bond M, Niimura H, Schoen FJ, Conner D, Fischman DA, Seidman CE, Seidman JG (1999) Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J Clin Invest 104(12):1771

    PubMed  CAS  Google Scholar 

  • McLachlan AD, Stewart M (1975) Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol 98:293–304

    PubMed  CAS  Google Scholar 

  • McLachlan AD, Stewart M (1976) The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 103(2):271–298

    PubMed  CAS  Google Scholar 

  • Memo M, Leung MC, Ward DG, Dos Remedios C, Morimoto S, Zhang L, Ravenscroft G, McNamara E, Nowak KJ, Marston SB, Messer AE (2013) Familial dilated cardiomyopathy mutations uncouple troponin i phosphorylation from changes in myofibrillar Ca2+ —sensitivity. Cardiovasc Res. doi:10.1093/cvr/cvt071

    PubMed  Google Scholar 

  • Michels VV, Moll PP, Miller FA, Tajik AJ, Chu JS, Driscoll DJ, Burnett JC, Rodeheffer RJ, Chesebro JH, Tazelaar HD (1992) The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 326(2):77–82. doi:10.1056/NEJM199201093260201

    PubMed  CAS  Google Scholar 

  • Miki M, Makimura S, Saitoh T, Bunya M, Sugahara Y, Ueno Y, Kimura-Sakiyama C, Tobita H (2011) A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin complex on a reconstituted thin filament. J Mol Biol 414(5):765–782. doi:10.1016/j.jmb.2011.10.033

    PubMed  CAS  Google Scholar 

  • Mirza M, Marston S, Willott R, Ashley C, Mogensen J, McKenna W, Robinson P, Redwood C, Watkins H (2005) Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J Biol Chem 280(31):28498–28506

    PubMed  CAS  Google Scholar 

  • Mirza M, Robinson P, Kremneva E, Copeland On, Nikolaeva O, Watkins H, Levitsky D, Redwood C, EL-Mezgueldi M, Marston S (2007) The Effect of Mutations in α-Tropomyosin (E40 K and E54 K) That Cause Familial Dilated Cardiomyopathy on the Regulatory Mechanism of Cardiac Muscle Thin Filaments. J Biol Chem 282:13487–13497

    PubMed  CAS  Google Scholar 

  • Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE (2008) Shared genetic causes of cardiac hypertrophy in children and adults. New Engl J Med 358(18):1899–1908. doi:10.1056/Nejmoa075463

    PubMed  CAS  Google Scholar 

  • Muthuchamy M, Pajak L, Howles P, Doetschman T, Wieczorek DF (1993) Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol Cell Biol 13(6):3311–3323

    PubMed  CAS  Google Scholar 

  • Muthuchamy M, Grupp IL, Grupp G, OToole BA, Kier AB, Boivin GP, Neumann J, Wieczorek DF (1995) Molecular and physiological effects of overexpressing striated muscle beta-tropomyosin in the adult murine heart. J Biol Chem 270(51):30593–30603

    PubMed  CAS  Google Scholar 

  • Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP, Wolska B, Evans C, Solaro RJ, Wieczorek DF (1999) Mouse model of a familial hypertrophic cardiomyopathy mutation in α-tropomyosin manifests cardiac dysfunction. Circ Res 85:47–56

    PubMed  CAS  Google Scholar 

  • Nakajima-Taniguchi C, Matsui H, Nagata S, Kishimoto T, Yamauchitakihara K (1995) Novel missense mutation in alpha-tropomyosin gene found in japanese patients with hypertrophic cardiomyopathy. J Mol Cell Cardiol 27(9):2053–2058. doi:10.1016/0022-2828(95)90026-8

    PubMed  CAS  Google Scholar 

  • Nevzorov IA, Levitsky DI (2011) Tropomyosin: double helix from the protein world. Biochemistry Biokhimiia 76(13):1507–1527. doi:10.1134/S0006297911130098

    PubMed  CAS  Google Scholar 

  • Nixon BR, Liu B, Scellini B, Tesi C, Piroddi N, Ogut O, John Solaro R, Ziolo MT, Janssen PM, Davis JP, Poggesi C, Biesiadecki BJ (2012) Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Arch Biochem Biophys. doi:10.1016/j.abb.2012.11.010

    PubMed  Google Scholar 

  • Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36(2):493–500

    PubMed  CAS  Google Scholar 

  • Oguchi Y, Ishizuka J, Hitchcock-DeGregori SE, Ishiwata S, Kawai M (2011) The role of tropomyosin domains in cooperative activation of the actin-myosin interaction. J Mol Biol 414(5):667–680. doi:10.1016/j.jmb.2011.10.026

    PubMed  CAS  Google Scholar 

  • Olson TM, Kishimoto NY, Whitby FG, Michels VV (2001) Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33(4):723–732. doi:10.1006/jmcc.2000.1339

    PubMed  CAS  Google Scholar 

  • Ommen SR, Gersh BJ (2009) Sudden cardiac death risk in hypertrophic cardiomyopathy. Eur Heart J 30(21):2558–2559

    PubMed  Google Scholar 

  • Opie LH, Mansford KR, Owen P (1971) Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem J 124(3):475–490

    PubMed  CAS  Google Scholar 

  • Pieples K, Arteaga G, Solaro RJ, Grupp I, Lorenz JN, Boivin GP, Jagatheesan G, Labitzke E, Detombe PP, Konhilas JP, Irving TC, Wieczorek DF (2002) Tropomyosin 3 expression leads to hypercontractility and attenuates myofilament length-dependent Ca2(+) activation. Am J Physiol-Heart C 283(4):H1344–H1353. doi:10.1152/ajpheart.00351.2002

    CAS  Google Scholar 

  • Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF (2001) A familial hypertrophic cardiomyopathy α-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 33:1815–1828

    PubMed  CAS  Google Scholar 

  • Prabhakar R, Petrashevskaya N, Schwartz A, Aronow B, Boivin GP, Molkentin JD, Wieczorek DF (2003) A mouse model of familial hypertrophic cardiomyopathy caused by a alpha-tropomyosin mutation. Mol Cell Biochem 251(1–2):33–42

    PubMed  CAS  Google Scholar 

  • Probst S, Oechslin E, Schuler P, Greutmann M, Boye P, Knirsch W, Berger F, Thierfelder L, Jenni R, Klaassen S (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovas Genet 4(4):367–374. doi:10.1161/CIRCGENETICS.110.959270

    CAS  Google Scholar 

  • Rajan S, Ahmed RP, Jagatheesan G, Petrashevskaya N, Boivin GP, Urboniene D, Arteaga GM, Wolska BM, Solaro RJ, Liggett SB, Wieczorek DF (2007) Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Res 101(2):205–214. doi:10.1161/CIRCRESAHA.107.148379

    PubMed  CAS  Google Scholar 

  • Rajan S, Jagatheesan G, Karam CN, Alves ML, Bodi I, Schwartz A, Bulcao CF, D’Souza KM, Akhter SA, Boivin GP, Dube DK, Petrashevskaya N, Herr AB, Hullin R, Liggett SB, Wolska BM, Solaro RJ, Wieczorek DF (2010) Molecular and functional characterization of a novel cardiac-specific human tropomyosin isoform. Circulation 121(3):410–416. doi:10.1161/Circulationaha.109.889725

    PubMed  CAS  Google Scholar 

  • Ranatunga KW (1996) Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers. Biophys J 71(4):1905–1913. doi:10.1016/S0006-3495(96)79389-X

    PubMed  CAS  Google Scholar 

  • Rao VS, Marongelli EN, Guilford WH (2009) Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit. Cell Motil Cytoskelet 66(1):10–23. doi:10.1002/cm.20321

    CAS  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261(5117):58–65

    PubMed  CAS  Google Scholar 

  • Regitz-Zagrosek V, Erdmann J, Wellnhofer E, Raible J, Fleck E (2000) Novel mutation in the alpha-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation 102(17):E112–E116

    PubMed  CAS  Google Scholar 

  • Roth K, Hubesch B, Meyerhoff DJ, Naruse S, Gober JR, Lawry TJ, Boska MD, Matson GB, Weiner MW (1989) Noninvasive quantitation of phosphorus metabolites in human-tissue by Nmr-spectroscopy. J Magn Reson 81(2):299–311

    CAS  Google Scholar 

  • Sadayappan S, Gulick J, Osinska H, Martin LA, Hahn HS, Dorn GW 2nd, Klevitsky R, Seidman CE, Seidman JG, Robbins J (2005) Cardiac myosin-binding protein-C phosphorylation and cardiac function. Circ Res 97(11):1156–1163. doi:10.1161/01.RES.0000190605.79013.4d

    PubMed  CAS  Google Scholar 

  • Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    PubMed  CAS  Google Scholar 

  • Sarma RJ, Chana A, Elkayam U (2010) Left ventricular noncompaction. Prog Cardiovasc Dis 52(4):264–273. doi:10.1016/j.pcad.2009.11.001

    PubMed  Google Scholar 

  • Schulz EM, Correll RN, Sheikh HN, Lofrano-Alves MS, Engel PL, Newman G, Schultz Jel J, Molkentin JD, Wolska BM, Solaro RJ, Wieczorek DF (2012) Tropomyosin dephosphorylation results in compensated cardiac hypertrophy. J Biol Chem 287(53):44478–44489. doi:10.1074/jbc.M112.402040

    PubMed  CAS  Google Scholar 

  • Sfichi-Duke L, Garcia-Cazarin ML, Sumandea CA, Sievert GA, Balke CW, Zhan DY, Morimoto S, Sumandea MP (2010) Cardiomyopathy-causing deletion K210 in cardiac troponin T alters phosphorylation propensity of sarcomeric proteins. J Mol Cell Cardiol 48(5):934–942. doi:10.1016/j.yjmcc.2010.01.005

    PubMed  CAS  Google Scholar 

  • Singh A, Hitchcock-DeGregori SE (2003) Local destabilization of the tropomyosin coiled coil gives the molecular flexibility required for actin binding. Biochemistry-Us 42(48):14114–14121. doi:10.1021/bi0348462

    CAS  Google Scholar 

  • Solaro RJ, Kobayashi T (2011) Protein phosphorylation and signal transduction in cardiac thin filaments. J Biol Chem 286(12):9935–9940. doi:10.1074/jbc.R110.197731

    PubMed  CAS  Google Scholar 

  • Stapleton MT, Fuchsbauer CM, Allshire AP (1998) BDM drives protein dephosphorylation and inhibits adenine nucleotide exchange in cardiomyocytes. Am J Physiol 275(4 Pt 2):H1260–H1266

    PubMed  CAS  Google Scholar 

  • Sutoh K, Ando M, Sutoh K, Toyoshima YY (1991) Site-directed mutations of dictyostelium actin—disruption of a negative charge cluster at the N-terminus. Proc Natl Acad Sci USA 88(17):7711–7714. doi:10.1073/pnas.88.17.7711

    PubMed  CAS  Google Scholar 

  • Tal L, Jimenez J, Tardiff JC (2012) DCM-Linked D230N Tropomyosin mutation results in early dilatation and systolic dysfunction in mice. Biophys J 102 (3(S1)):356a

  • Tardiff JC (2005) Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev 10(3):237–248. doi:10.1007/s10741-005-5253-5

    PubMed  CAS  Google Scholar 

  • Tardiff JC (2011) Thin filament mutations: developing an integrative approach to a complex disorder. Circ Res 108(6):765–782. doi:10.1161/CIRCRESAHA.110.224170

    Google Scholar 

  • Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H-P, Seldman JG, Seidman CE (1994) α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77(5):701–712

    PubMed  Google Scholar 

  • van de Meerakker JB, Christiaans I, Barnett P, Lekanne Deprez RH, Ilgun A, Mook OR, Mannens MM, Lam J, Wilde AA, Moorman AF, Postma AV (2012) A novel alpha-tropomyosin mutation associates with dilated and non-compaction cardiomyopathy and diminishes actin binding. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2012.11.003

    PubMed  Google Scholar 

  • Van Driest SL, Ackerman MJ, Ommen SR, Shakur R, Will ML, Nishimura RA, Tajik AJ, Gersh BJ (2002) Prevalence and severity of “benign” mutations in the beta-myosin heavy chain, cardiac troponin T, and alpha-tropomyosin genes in hypertrophic cardiomyopathy. Circulation 106(24):3085–3090

    PubMed  Google Scholar 

  • Van Driest SL, Ellsworth EG, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ (2003) Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation 108(4):445–451. doi:10.1161/01.CIR.0000080896.52003.DF

    PubMed  Google Scholar 

  • VanBuren P, Palmiter KA, Warshaw DM (1999) Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. Proc Natl Acad Sci USA 96(22):12488–12493. doi:10.1073/pnas.96.22.12488

    PubMed  CAS  Google Scholar 

  • Wang J, Flemal K, Qiu Z, Ablin L, Grossman W, Morgan JP (1994) Ca2+ handling and myofibrillar Ca2+ sensitivity in ferret cardiac myocytes with pressure-overload hypertrophy. Am J Physiol 267(3 Pt 2):H918–H924

    PubMed  CAS  Google Scholar 

  • Wang GW, Ding W, Kawai M (1999) Does thin filament compliance diminish the cross-bridge kinetics? A study in rabbit psoas fibers. Biophys J 76:978–984

    PubMed  CAS  Google Scholar 

  • Waurick R, Knapp J, Van Aken H, Boknik P, Neumann J, Schmitz W (1999) Effect of 2,3-butanedione monoxime on force of contraction and protein phosphorylation in bovine smooth muscle. Naunyn-Schmiedeberg’s archives of pharmacology 359(6):484–492

    PubMed  CAS  Google Scholar 

  • Whitby FG, Phillips GN (2000) Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins 38(1):49–59. doi:10.1002/(Sici)1097-0134(20000101)

    PubMed  CAS  Google Scholar 

  • Wieczorek DF, Jagatheesan G, Rajan S (2008) The role of tropomyosin in heart disease. Adv Exp Med Biol 644:132–142

    PubMed  CAS  Google Scholar 

  • Williams DL Jr, Greene LE (1983) Comparison of the effects of tropomyosin and troponin-tropomyosin on the binding of myosin subfragment 1 to actin. Biochemistry 22(11):2770–2774

    PubMed  CAS  Google Scholar 

  • Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD (2010) Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 48(5):882–892. doi:10.1016/j.yjmcc.2009.10.031

    PubMed  CAS  Google Scholar 

  • Wisloff U, Loennechen JP, Currie S, Smith GL, Ellingsen O (2002) Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res 54(1):162–174

    PubMed  CAS  Google Scholar 

  • Wolff MR, Buck SH, Stoker SW, Greaser ML, Mentzer RM (1996) Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest 98(1):167–176

    PubMed  CAS  Google Scholar 

  • Yamauchi-Takihara K, Nakajima-Taniguchi C, Matsui H, Fujio Y, Kunisada K, Nagata S, Kishimoto T (1996) Clinical implications of hypertrophic cardiomyopathy associated with mutations in the alpha-tropomyosin gene. Heart 76(1):63–65

    PubMed  CAS  Google Scholar 

  • Yuan C, Sheng Q, Tang H, Li Y, Zeng R, Solaro RJ (2008) Quantitative comparison of sarcomeric phosphoproteomes of neonatal and adult rat hearts. Am J Physiol Heart Circ Physiol 295(2):H647–H656. doi:10.1152/ajpheart.00357.2008

    PubMed  CAS  Google Scholar 

  • Zaragoza MV, Arbustini E, Narula J (2007) Noncompaction of the left ventricle: primary cardiomyopathy with an elusive genetic etiology. Curr Opin Pediatr 19(6):619–627. doi:10.1097/MOP.0b013e3282f1ecbc

    PubMed  Google Scholar 

  • Zhao Y, Kawai M (1994) Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 67(4):1655–1668. doi:10.1016/S0006-3495(94)80638-1

    PubMed  CAS  Google Scholar 

  • Zimmerman RS, Cox S, Lakdawala NK, Cirino A, Mancini-DiNardo D, Clark E, Leon A, Duffy E, White E, Baxter S, Alaamery M, Farwell L, Weiss S, Seidman CE, Seidman JG, Ho CY, Rehm HL, Funke BH (2010) A novel custom resequencing array for dilated cardiomyopathy. Genet Med 12(5):268–278. doi:10.1097/GIM.0b013e3181d6f7c0

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the NIH (HL70041) to MK. The content of this study is solely the responsibility of the authors, and does not necessarily represent the official view of the awarding organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, F., Wang, L. & Kawai, M. A study of tropomyosin’s role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 34, 295–310 (2013). https://doi.org/10.1007/s10974-013-9343-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9343-z

Keywords

Navigation