Skip to main content
Log in

High temperature adsorption of carbon dioxide on Cu–Al hydrotalcite-derived mixed oxides: kinetics and equilibria by thermogravimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of Cu/Al molar ratio on the high-temperature adsorption characteristics of CO2 on the mixed oxides of Cu–Al hydrotalcite skeletal structure has been studied by thermogravimetry. The Cu/Al molar ratio of the hydrotalcites synthesized was varied between 1.0 and 3.0, and the adsorption temperature ranged from ambient to 600 °C. The hydrotalcite with Cu/Al molar ratio of 2.0 was found to be the most suitable adsorbent for high-temperature CO2 adsorption, in both the capacity and the rate of adsorption. The activation energy values suggested that the physical adsorption dominates at low temperatures (<400 °C) and the chemisorption dominates at high temperatures (>400 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burchell TD, Judkins RR, Rogers MR, Williams AM. A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon. 1997;35:1279–94.

    Article  CAS  Google Scholar 

  2. McKernan IW, Holder MJ. Purification of hydrocarbons. GB Patent 2267096; 1993.

  3. Wieland PO. Living together in space: the design and operation of the life support systems on the International Space Station. NASA TM-206956, XI-267; 1998.

  4. Ding Y, Elpay E. Adsorption-enhanced steam–methane reforming. Chem Eng Sci. 2000;55:3929–40.

    Article  CAS  Google Scholar 

  5. Hufton JR, Mayorga S, Sircar S. Sorption-enhanced reaction process for the hydrogen production. AIChE J. 1999;45:248–56.

    Article  CAS  Google Scholar 

  6. Hufton J, Mayorga S, Gaffney T, Nataraj S, Sircar S. Sorption enhanced reaction process (SERP). USDOE Hydrogen Program Rev. 1997;1:179–94.

    Google Scholar 

  7. Lee KB, Beaver MG, Caram HS, Sircar S. Reversible chemisorption of carbon dioxide: simultaneous production of fuel-cell grade H2 and compressed CO2 from synthesis gas. Adsorption. 2007;13:385–97.

    Article  CAS  Google Scholar 

  8. Gaffney TR, Golden TC, Mayorga SG, Brzozowski JR, Tayler FW. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents. US Patent 5917136; 1999.

  9. Sakadjian BB, Iyer MV, Gupta H, Fan L-S. Kinetics and structural characterization of calcium-based sorbents calcined under subatmospheric conditions for the high-temperature CO2 capture process. Ind Eng Chem Res. 2007;46:35–42.

    Article  CAS  Google Scholar 

  10. Auroux A, Gervasini A. Microcalorimetric study of the acidity and basicity of metal oxides surface. J Phys Chem. 1990;94:6371–9.

    Article  CAS  Google Scholar 

  11. Cho YK, Han KW, Lee KH. Separation of CO2 by modified γ-Al2O3 membranes at high temperature. J Membr Sci. 1995;104:219–30.

    Article  CAS  Google Scholar 

  12. Lee KB, Beaver MG, Caram HS, Sircar S. Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE J. 2007;53:2824–31.

    Article  CAS  Google Scholar 

  13. Yong Z, Mata VG, Rodrigues AE. Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption. 2001;7:41–50.

    Article  CAS  Google Scholar 

  14. Plaza MG, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, et al. Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. J Therm Anal Cal. 2008;92:601–6.

    Article  CAS  Google Scholar 

  15. Ding Y, Elpay E. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem Eng Sci. 2000;55:3461–74.

    Article  CAS  Google Scholar 

  16. Yong Z, Mata V, Rodrigues AE. Adsorption of carbon dioxide at high temperature – a review. Sep Purif Technol. 2002;26:195–205.

    Article  CAS  Google Scholar 

  17. Hutson ND, Attwood BC.High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption. 2008;14:781–9.

    Article  CAS  Google Scholar 

  18. Reddy MKR, Xu ZP, Lu GQ, Diniz da Costa JC. Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind Eng Chem Res. 2006;45:7504–9.

    Article  Google Scholar 

  19. Yong Z, Mata V, Rodrigues AE. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Ind Eng Chem Res. 2001;40:204–9.

    Article  CAS  Google Scholar 

  20. Reichle WT. Anionic clay minerals. CHEMTECH. 1986;16:58–63.

    CAS  Google Scholar 

  21. Vaccari A. Preparation and catalytic properties of cationic and anionic clays. Catal Today. 1998;41:53–71.

    Article  CAS  Google Scholar 

  22. Lwin Y, Yarmo MA, Yaakob Z, Mohamad AB, Daud WRW. Synthesis and characterization of Cu–Al layered double hydroxides. Mater Res Bull. 2001;36:193–8.

    Article  CAS  Google Scholar 

  23. Voyer N, Soisnard A, Palmer SJ, Martens WN, Frost RL. Thermal decomposition of the layered double hydroxides of formula Cu6Al2(OH)16CO3 and Zn6Al2(OH)16CO3. J Therm Anal Cal. 2009;96:481–5. doi: 10.1007/s10973-008-9169-x.

    Article  CAS  Google Scholar 

  24. Lwin Y, Mohamad AB, Yaakob Z, Daud WRW. XRD and TPR studies of Cu–Al hydrotalcite derived highly dispersed mixed metal oxides. React Kinet Catal Lett. 2000;70:303–10.

    Article  CAS  Google Scholar 

  25. Kannan S, Rives V, Knozinger H. High-temperature transformations of Cu-rich hydrotalcites. J Solid State Chem. 2004;177:319–31.

    Article  CAS  Google Scholar 

  26. Mao G, Tsuji M, Tamaura Y. Synthesis and CO2 adsorption features of a hydrotalcite-like compound of the Mg2+–Al3+–Fe(CN)6 4-. Clays Clay Miner. 1993;41:731–7.

    Article  CAS  Google Scholar 

  27. Tsuji M, Mao G, Tamaura Y. Hydrotalcites with an extended Al3+-substitution: synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors. J Mater Res. 1993;8:1137–42.

    Article  CAS  Google Scholar 

  28. Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Cal. 2009;95:123–9.

    Article  CAS  Google Scholar 

  29. Kloprogge JT, Frost RL. Infrared emission spectroscopic study of the thermal transformation of Mg-, Ni- and Co-hydrotalcite catalysts. Appl Catal A. 1999;184:61–71.

    Article  Google Scholar 

Download references

Acknowledgments

Much of this work was performed in the Universiti Sains Malaysia, which supported financially through the Short-term Grant FPP 052-2003. The first author would also like to acknowledge the support provided by the Universiti Malaysia Perlis and the Universiti Teknologi PETRONAS in preparing this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Lwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lwin, Y., Abdullah, F. High temperature adsorption of carbon dioxide on Cu–Al hydrotalcite-derived mixed oxides: kinetics and equilibria by thermogravimetry. J Therm Anal Calorim 97, 885–889 (2009). https://doi.org/10.1007/s10973-009-0156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0156-7

Keywords

Navigation