Skip to main content
Log in

ZnO nanorods on ZnO seed layer derived by sol–gel process

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Well-aligned ZnO nanorods are obtained by a liquid phase epitaxial growth on the indium-doped tin oxide glass deposited with a ZnO thin film as the seed layer, which is prepared by combining a sol–gel process and a spin coating technique. The effects of water content in the sol and heat treatment temperature on the properties of the ZnO thin film are investigated. Relationship among the seed layer, the growing time, the growing temperature, the concentration of Zn2+ in the solution, the anions in the solution and the resulting ZnO nanorods are discussed in detail. X-ray diffraction analysis and scanning electronic microscopy are employed to characterize the structural and morphological properties of the resulting ZnO nanorods. Results indicate that the ZnO nanorods with a preferred orientation show a single crystal with a wurtzite structure in the direction of [0001], the diameter of the ZnO nanorods seems to depend on the size of the seed grain, while the length of the ZnO nanorods is determined by the growing time and the growing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A (2001) J Phys Chem 105:3305–3352

    Google Scholar 

  2. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nat Mater 4:455–459

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Liang S, Sheng H, Liu Y, Hiu Z, Lu Y, Shen H (2001) J Cryst Growth 225:110–113

    Article  CAS  ADS  Google Scholar 

  4. Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K (2002) Adv Mater 14:418–421

    Article  CAS  Google Scholar 

  5. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897–1899

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Koch MH, Timbrell PY, Lamb RN (1995) Semicond Sci Tech 10:1523–1527

    Article  CAS  ADS  Google Scholar 

  7. Golego N, Studenikin SA, Cocivera M (2000) J Electrochem Soc 147:1592–1594

    Article  CAS  Google Scholar 

  8. Li Y, Meng GW, Zhang LD, Phillipp F (2000) Appl Phys Lett 76:2011–2013

    Article  CAS  ADS  Google Scholar 

  9. Konenkamp R, Boedecker K, Lux-Steiner MC, Poschenrieder M, Zenia F, Levy-Clement C, Wagner S (2000) Appl Phys Lett 77:2575–2577

    Article  CAS  ADS  Google Scholar 

  10. Izaki M, Omi T (1996) Appl Phys Lett 68:2439–2440

    Article  CAS  ADS  Google Scholar 

  11. Pauporte T, Lincot D (1999) Appl Phys Lett 75:3817–3819

    Article  CAS  ADS  Google Scholar 

  12. Park WI, Kim DH, Jung SW, Yi GC (2002) Appl Phys Lett 80:4232–4234

    Article  CAS  ADS  Google Scholar 

  13. Liu DF, Xiang YJ, Liao Q, Zhang JP, Wu XC, Zhang ZX, Liu LF, Ma WJ, Shen J, Zhou WY, Xie SS (2007) Nanotechnology 18(405303):1–5

    MATH  Google Scholar 

  14. Wu WB, Hu GD, Cui SG, Zhou Y, Wu HT (2008) Cryst Growth Des 8:4014–4020

    Article  CAS  Google Scholar 

  15. Zhao J, Jin ZG, Liu XX, Liu ZF (2006) Jour Ceram Soc 26:3745–3752

    Article  CAS  Google Scholar 

  16. Ohyama M, Kozuka H, Yoko T (1997) Thin Solid Films 306:78–85

    Article  CAS  ADS  Google Scholar 

  17. Peterson RB, Fields CL, Gregg BA (2004) Langmuir 822:85–90

    CAS  Google Scholar 

  18. Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) J Cryst Growth 203:186–196

    Article  CAS  ADS  Google Scholar 

  19. Laudise RA, Kolb ED (1963) Am. Mineral 48:642–648

    CAS  Google Scholar 

  20. Suscavage M, Harris M, Bliss D, Yip P, Wang SQ, Schwall D, Bouthillette L, Bailey J, Callahan M, Look DC, Reynolds DC, Jones RL, Litton CW (1999) MRS Internet J Nitride Semicond Res 4S1, G3. 40

  21. Laudise RA, Ballman AA (1960) J Phys Chem 64:688–691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China through 863-project under grant 2009AA03Z218, the Science and Technology Developing Project of Shaanxi Province (2008K01-34), and Xi’an Applied Materials Innovation Fund (XA-AM-200805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. X. Que.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y.T., Que, W.X. & Kam, C.H. ZnO nanorods on ZnO seed layer derived by sol–gel process. J Sol-Gel Sci Technol 53, 605–612 (2010). https://doi.org/10.1007/s10971-009-2138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2138-4

Keywords

Navigation