Skip to main content
Log in

Effective atomic number and electron density of marble concrete

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effective atomic numbers (Z eff) and effective electron density (N e) of different type concrete have been measured and the results were compared with the calculation obtained using the mass attenuation coefficients (μ/ρ) obtained via XCOM in the photon energy range of 1 keV–100 GeV. Six different concrete in where marble has been used in the rate of 0, 5, 10, 15, 20, 25 %, has been used in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akkurt I (2007) Effective atomic numbers for Fe-Mn alloy using transmission experiment. Chinese Phys Lett 24–10:2812

    Article  Google Scholar 

  2. Akkurt I (2009) Effective atomic and electron numbers of some steels at different energies. Ann Nucl Energy 36(11–12):1702–1705

    Article  CAS  Google Scholar 

  3. Akkurt I (2011) Determination of effective atomic number and electron density of chitin by gamma-ray attenuation. Int J Phys Sci 6:5048–5050

    CAS  Google Scholar 

  4. Akkurt I et al (2005) Study on Z dependence of partial and total mass attenuation coefficients. J Quantit Spect Radiat Transf 94(3–4):379–385

    Article  CAS  Google Scholar 

  5. Akkurt I, Akyildirim H, Mavi B, Kilincarslan S, Basyigit C (2010) Gamma-ray shielding properties of concrete including barite at different energies. Prog Nucl Energy 52(1):620–623

    Article  CAS  Google Scholar 

  6. Akkurt I et al (2012) Photon attenuation coefficients of concrete including marble aggregates. Ann Nucl Energy 43:56–60

    Article  CAS  Google Scholar 

  7. Antoniassi M, Conceicão ALC, Poletti ME (2011) Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio. Instr Methods Phys Res A 652:739–743

    Article  CAS  Google Scholar 

  8. Birgani MJT, Seif F, Chegeni N, Bayatiani MR (2012) Determination of the effective atomic and mass numbers for mixture and compound materials in high energy photon interactions. J Radioanal Nucl Chem 292:1367–1370

    Article  Google Scholar 

  9. Demir D, Tursucu A (2012) Studies on mass attenuation coefficient, mass energy absorption coefficient and kerma of some vitamins. Ann Nucl Energy 48:17–20

    Article  CAS  Google Scholar 

  10. Gowda S, Krishnaveni S, Gowda R (2005) Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl Instrum Methods Phys Res B 239:361–369

    Article  CAS  Google Scholar 

  11. Gurler O, Akar Tarim U (2012) An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method. J Radioanal Nucl Chem. Doi: 10.1007/s10967-012-1749-3

  12. Guru Prasad S et al (1998) Effective atomic numbers for photo absorption in alloys in the energy region of absorption edges. Rad Phys Chem 53:449–453

    Article  Google Scholar 

  13. Hine GJ (1952) The effective atomic numbers of materials for various gamma ray interactions. Phys Rev 85:725

    CAS  Google Scholar 

  14. Icelli O et al (2005) Effective atomic numbers for CoCuNi alloys using transmission experiments. J Quant spect Radiat Transf 91:485–491

    Article  CAS  Google Scholar 

  15. Kirdsiri K, Kaewkhao J, Limsuwan P (2012) Photon interaction in borate glass doped with Bi2O3 at different energies. Procedia Eng 32:727–733

    Article  CAS  Google Scholar 

  16. Manohara SR, Hanagodimath SM (2007) Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 258(2):321–328

    Google Scholar 

  17. Manohara SR, Hanagodimath SM, Thind KS et al (2008) On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 266(18):3906–3912

    Google Scholar 

  18. Manohara SR, Hanagodimath SM, Gerward L (2009) The effective atomic numbers of some biomolecules calculated by two methods: a comparative study. Med Phys 36(1):137–141

    Google Scholar 

  19. Mavi B (2012) Experimental investigation of <gamma>-ray attenuation coefficients for granites. Ann Nucl Energy 44:22–25

    Article  CAS  Google Scholar 

  20. Medhat ME (2011) Studies on effective atomic numbers and electron densities in different solid state track detectors in the energy range 1 keV–100 GeV. Ann Nucl Energy 38:1252–1263

    Article  CAS  Google Scholar 

  21. Medhat ME (2012) Study of the mass attenuation coefficients and effective atomic numbers in some gemstones. J Radioanal Nucl Chem 293:555–564

    Article  CAS  Google Scholar 

  22. Murty VRK et al (2000) Effective atomic numbers for W/Cu alloy using transmission experiments. Appl Rad Isot 53:945–948

    Article  CAS  Google Scholar 

  23. Rezaei-Ochbelagh D, Azimkhani S, Mosavinejad HG (2012) Shielding and strength tests of silica fume concrete. Ann Nucl Energy 45:150–154

    Article  CAS  Google Scholar 

  24. Sharma R, Sharma V, Singh PS, Singh T (2012) Effective atomic numbers for some calcium-strontium-borate glasses. Ann Nucl Energy 45:144–149

    Article  CAS  Google Scholar 

  25. Shivalinge G, Krishnaveni S, Ramakrishna G (2005) Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl Inst Met Phys Res B 239–4:361–369

    Google Scholar 

  26. Shivaramu R, Vijayakumar R, Rajasekaran L et al (2001) Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest. Radiat Phys Chem 62(5–6):371–377

    Google Scholar 

  27. Sidhu BS, Dhaliwal AS, Mann KS, Kahlon KS (2012) Study of mass attenuation coefficients, effective atomic numbers and electron densities for some low Z compounds of dosimetry interest at 59.54 keV incident photon energy. Ann Nucl Energy 42:153–157

    Article  CAS  Google Scholar 

  28. Woods J (1982) Computational methods in reactor shielding. Pergamon, New York

    Google Scholar 

  29. El-Khayatt AM and Akkurt I (submitted) Photon interaction, energy absorption and neutron removal cross section of concrete including marble

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Akkurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkurt, I., El-Khayatt, A.M. Effective atomic number and electron density of marble concrete. J Radioanal Nucl Chem 295, 633–638 (2013). https://doi.org/10.1007/s10967-012-2111-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2111-5

Keywords

Navigation