Skip to main content
Log in

Partially Observed Time-Inconsistency Recursive Optimization Problem and Application

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study a partially observed recursive optimization problem, which is time inconsistent in the sense that it does not admit the Bellman optimality principle. To obtain the desired results, we establish the Kalman–Bucy filtering equations for a family of parameterized forward and backward stochastic differential equations, which is a Hamiltonian system derived from the general maximum principle for the fully observed time-inconsistency recursive optimization problem. By means of the backward separation technique, the equilibrium control for the partially observed time-inconsistency recursive optimization problem is obtained, which is a feedback of the state filtering estimation. To illustrate the applications of theoretical results, an insurance premium policy problem under partial information is presented, and the observable equilibrium policy is derived explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strotz, R.: Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23, 165–180 (1955)

    Article  Google Scholar 

  2. Goldman, S.: Consistent plans. Rev. Econ. Stud. 47, 533–537 (1980)

    Article  MATH  Google Scholar 

  3. Krusell, P., Smith, A.: Consumption and savings decisions with quasi-geometric discounting. Econometrica 71, 366–375 (2003)

    Article  Google Scholar 

  4. Peleg, B., Menahem, E.: On the existence of a consistent course of action when tastes are changing. Rev. Econ. Stud. 40, 391–401 (1973)

    Article  MATH  Google Scholar 

  5. Pollak, R.: Consistent planning. Rev. Econ. Stud. 35, 185–199 (1968)

    Article  Google Scholar 

  6. Vieille, N., Weibull, J.: Multiple solutions under quasi-exponential discounting. Econ. Theory 39, 513–526 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ekeland, I., Lazrak, A.: Being serious about non-commitment: subgame perfect equilibrium in continuous time. Preprint, University of British Columbia (2006)

  8. Ekeland, I., Privu, T.: Investment and consumption without commitment. Math. Financ. Econ. 2, 57–86 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Björk, T., Murgoci, A.: A general theory of Markovian time inconsistent stochastic control problems. SSRN: http://ssrn.com/abstract=1694759 (2010)

  10. Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu, Y., Jin, H., Zhou, X.: Time-inconsistent stochastic linear-quadratic control. Preprint (2011)

  12. Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  13. Huang, J., Wang, G., Xiong, J.: A maximum principle for partial information backward stochastic control problems with applications. SIAM J. Control Optim. 48(4), 2106–2117 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Xiong, J., Zhou, X.: Mean-variance portfolio selection under partial information. SIAM J. Control Optim. 46(1), 156–175 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, X., Tang, S.: General necessary conditions for partially observed optimal stochastic controls. J. Appl. Probab. 32, 1118–1137 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tang, S.: The maximum principle for partially observed optimal control of stochastic differential equations. SIAM J. Control Optim. 36(5), 1596–1617 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yu, X.: An explicit example of optimal portfolio-consumption choices with habit formation and partial observations. arXiv:1112.2939 (2012)

  18. Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  19. Wu, Z.: The stochastic maximum principle for partially observed forward and backward stochastic control systems. Sci. China 53(11), 2205–2214 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Wang, G., Wu, Z.: Kalman–Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems. J. Math. Anal. Appl. 342, 1280–1296 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pardoux, E., Peng, S.G.: Adapted solutions of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Duffie, D., Epstein, L.: Stochastic differential utility. Econometrica 60, 353–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. El Karoui, N., Peng, S.G., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7, 1–71 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hu, Y., Zhou, X.: Constrained stochastic LQ control with random coefficients and application to portfolio selection. SIAM J. Control Optim. 44, 444–466 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhou, X., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42, 19–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bjork, T., Murgoci, A., Zhou, X.: Mean-variance portfolio optimization with state dependent risk aversion. Math. Finance (2012). doi:10.1111/j.1467-9965.2011.00515.x

    Google Scholar 

  27. Liptser, R.S., Shiryayev, A.N.: Statistics of Random Process. Springer, New York (1977)

    Book  Google Scholar 

  28. Xiong, J.: An Introduction to Stochastic Filtering Theory. Oxford University Press, London (2008)

    MATH  Google Scholar 

  29. Norberg, R.: Ruin problems with assets and liabilities of diffusion type. Stoch. Process. Appl. 81, 255–269 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bielecki, T., Pliska, S.: Risk-sensitive dynamic asset management. Appl. Math. Optim. 39, 337–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nagai, H., Peng, S.: Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann. Appl. Probab. 12, 173–195 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Boswijk, H., Hommes, C., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31, 1938–1970 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (11221061 and 61174092) and the Natural Science Fund for Distinguished Young Scholars of China (11125102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wu.

Additional information

Communicated by Francesco Zirilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wu, Z. Partially Observed Time-Inconsistency Recursive Optimization Problem and Application. J Optim Theory Appl 161, 664–687 (2014). https://doi.org/10.1007/s10957-013-0326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0326-4

Keywords

Navigation