Skip to main content
Log in

Inversion of the Kirkwood–Buff Theory of Solutions: Application to Tetrahydrofuran + Aromatic Hydrocarbon Binary Liquid Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Kirkwood–Buff (K-B) integrals play an important role in characterizing the intermolecular interactions in liquid mixtures. The interaction is represented by the K-B parameters, G AA,G BB, and G AB, which reflect correlation between like-like and like-unlike species in the mixture. The K-B integrals of binary mixtures of tetrahydrofuran with benzene, toluene, o-xylene, m-xylene, p-xylene and mesitylene at 298.15 K and atmospheric pressure have been computed from the experimental data of ultrasonic speed and density. We have used the similar inverse procedure (as proposed by Ben-Naim) to compute the K-B parameters of the mixture, in which thermodynamic information on mixtures, such as partial molar volumes, isothermal compressibility and experimental data of partial vapor pressures were used. A new route has been incorporated by using regular solution theory in the computation of excess Gibbs energy for obtaining the partial vapor pressures of binary liquid mixtures. The low values of excess entropy, S E≈0, obtained for these mixtures indicate the applicability of regular solution theory to the mixtures. The values of the K-B parameter, G AB, obtained using this procedure indicate that the correlation/affinity between THF and aromatic hydrocarbon molecules follows the order: benzene > toluene > o-xylene > m-xylene > p-xylene > mesitylene, which is in good agreement with the results obtained from the trends exhibited by the excess functions of these mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iloukhani, H., Zoorasna, Z., Soleimani, R.: Excess molar volumes and speeds of sound of tetrahydrofuran with chloroethanes or chloroethenes at 298.15 K. Phys. Chem. Liq. 43, 391–401 (2005)

    Article  CAS  Google Scholar 

  2. George, J., Sastry, N.V.: Partial excess molar volumes, partial excess isentropic compressibilities and relative permittivities of water + ethane-1,2-diol derivative and water + 1,2-dimethoxy ethane at different temperatures. Fluid Phase Equilib. 216, 307–321 (2004)

    Article  CAS  Google Scholar 

  3. Giner, B., Artigas, H., Carrion, A., Lafuente, C., Royo, F.M.: Excess thermodynamic properties of isomeric butanols with 2-methyltetrahydrofuran. J. Mol. Liq. 108, 303–311 (2003)

    Article  CAS  Google Scholar 

  4. Nain, A.K.: Ultrasonic and viscometric studies of molecular interactions in binary mixtures of acetonitrile with some amides at different temperatures. Bull. Chem. Soc. Jpn. 79, 1688–1695 (2006)

    Article  CAS  Google Scholar 

  5. Nain, A.K.: Densities and volumetric properties of (formamide + ethanol, or 1-propanol, or 1,2-ethanediol, or 1,2-propanediol) mixtures at temperatures between 293.15 and 318.15 K. J. Chem. Thermodyn. 39, 462–473 (2007)

    Article  CAS  Google Scholar 

  6. Nain, A.K.: Ultrasonic and viscometric studies of molecular interactions in binary mixtures of formamide with ethanol, 1-propanol, 1,2-ethanediol and 1,2-propanediol at different temperatures. J. Mol. Liq. 140, 108–116 (2008)

    Article  CAS  Google Scholar 

  7. Nain, A.K.: Densities and volumetric properties of binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at temperatures between 293.15 and 318.15 K. J. Solution Chem. 36, 497–516 (2007)

    Article  CAS  Google Scholar 

  8. Nain, A.K.: Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study. Fluid Phase Equilib. 265, 46–56 (2008)

    Article  CAS  Google Scholar 

  9. Ali, A., Nain, A.K., Chand, D., Ahmad, R.: Volumetric and ultrasonic studies of molecular interactions in binary mixtures of dimethyl sulfoxide with some aromatic hydrocarbons at different temperatures. Bull. Chem. Soc. Jpn. 79, 702–710 (2006)

    Article  CAS  Google Scholar 

  10. Ali, A., Nain, A.K.: Ultrasonic and volumetric study of binary mixtures of benzyl alcohol with amides. Bull. Chem. Soc. Jpn. 75, 681–687 (2002)

    Article  CAS  Google Scholar 

  11. Kirkwood, J.G., Buff, F.P.: The statistical mechanical theory of solutions. J. Chem. Phys. 19, 774–777 (1951)

    Article  CAS  Google Scholar 

  12. Ben-Naim, A.: Inversion of Kirkwood–Buff theory of solutions: Application to the water-ethanol system. J. Chem. Phys. 67, 4884–4890 (1977)

    Article  CAS  Google Scholar 

  13. Shuglin, I.L., Ruckenstein, E.: The Kirkwood–Buff theory of solutions and the local composition of liquid mixtures. J. Phys. Chem. B 110, 12707–12713 (2006)

    Google Scholar 

  14. Perera, A., Sokolic, F., Almasy, L., Koga, Y.: Kirkwood–Buff integrals of aqueous alcohol binary mixtures. J. Chem. Phys. 124, 124575-1–124575-9 (2006)

    Article  Google Scholar 

  15. Gonzalez, J.A., Mozo, I., Villa, S., Riesco, N., De La Fuente, I.G., Cobos, J.C.: Thermodynamics of mixtures containing organic carbonates. Part XV. Application of the Kirkwood–Buff theory to the study of interactions in liquid mixtures containing dialkyl carbonates and alkanes, benzene, CCl4 or 1-alkanols. J. Solution Chem. 35, 787–801 (2006)

    Article  CAS  Google Scholar 

  16. Donkersloot, M.C.A.: The structure of binary liquids. The Kirkwood-Buff theory of liquid mixtures, illustrated on the basis of systemswater/methanol, water/ethanol, and cyclohexane/2,3-dimethylbutane, as a link between thermmodynaimc data and X-ray and neutron scattering results. J. Solution Chem. 8, 293–307 (1979)

    Article  CAS  Google Scholar 

  17. Newman, K.E.: Kirkwood–Buff solution theory: Derivation and application. Chem. Soc. Rev. 23, 31–40 (1994)

    Article  CAS  Google Scholar 

  18. Newman, K.E.: Application of Kirkwood–Buff theory to enthalpies of transfer and expansibilities of solutes in binary solvent mixtures. J. Chem. Soc. Faraday Trans. 84, 3885–3890 (1988)

    Article  CAS  Google Scholar 

  19. Vergara, A., Paduano, L., Capuano, F., Sartorio, R.: Kirkwood–Buff integrals for polymer-solvent mixtures. Preferential solvation and volumetric analysis in aqueous PEG solutions. Phys. Chem. Chem. Phys. 4, 4716–4723 (2002)

    Article  CAS  Google Scholar 

  20. Zielkiewicz, J.: Solvation of amide group by water and alcohols investigated using the Kirkwood–Buff theory of solutions. J. Chem. Soc. Faraday Trans. 94, 1713–1719 (1998)

    Article  CAS  Google Scholar 

  21. Banerjee, D., Laha, A.K., Chatterjee, P., Bagchi, S.: Preferential solvation in three component systems: Evaluation of Kirkwood–Buff parameters. J. Solution Chem. 24, 301–310 (1995)

    Article  Google Scholar 

  22. Covington, A.K., Newman, K.E.: Application of Kirkwood–Buff theory to free energies of transfer of electrolytes from one solvent to other. J. Chem. Soc. Faraday Trans. 84, 1393–1404 (1988)

    Article  CAS  Google Scholar 

  23. Pandey, J.D., Verma, R.: Inversion of Kirkwood–Buff theory of solutions: application to binary systems. Chem. Phys. 270, 429–438 (2001)

    Article  CAS  Google Scholar 

  24. Guha, A., Ghosh, N.K.: Partial molar quantities and thermodynamic interaction parameters for some binary mixtures: CH2Cl2 + CS2, CH3OH + CCl4, CH3OH + C6H6 and CH3OH + CHCl3 systems. Indian J. Chem. 45A, 593–598 (2006)

    CAS  Google Scholar 

  25. Matteoli, E.: A study on Kirkwood–Buff integrals and preferential solvation in mixtures with small deviation in ideality and/or with size mismatch of components. Importance of a proper reference system. J. Phys. Chem. B 101, 9800–9810 (1997)

    Article  CAS  Google Scholar 

  26. Marcus, Y.: Preferential solvation in mixed solvents. J. Solution Chem. 35, 251–277 (2006)

    Article  CAS  Google Scholar 

  27. Nain, A.K.: Densities and volumetric properties of binary mixtures of tetrahydrofuran with some aromatic hydrocarbons at temperatures from 278.15 to 318.15 K. J. Solution Chem. 35, 1417–1439 (2006)

    Article  CAS  Google Scholar 

  28. Nain, A.K.: Ultrasonic and viscometric studies of molecular interactions in binary mixtures of tetrahydrofuran with some aromatic hydrocarbons at temperatures between 288.15 and 318.15. Phys. Chem. Liq. 45, 371–388 (2007)

    Article  CAS  Google Scholar 

  29. Nain, A.K.: Densities and volumetric properties of (acetonitrile + an amide) at temperatures between 293.15 and 318.15 K. J. Chem. Thermodyn. 38, 1362–1370 (2006)

    Article  CAS  Google Scholar 

  30. Hildebrand, J.H., Scott, R.L.: Regular Solutions. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

  31. Hildebrand, J.H.: The entropy of solution of molecules of different size. J. Chem. Phys. 15, 225–228 (1947)

    Article  CAS  Google Scholar 

  32. Dack, M.R.J.: The importance of solvent internal pressure and cohesion to solution phenomena. Chem. Soc. Rev. 4, 211–229 (1975)

    Article  CAS  Google Scholar 

  33. Pal, A., Kumar, H.: Prediction of excess heat capacity from internal pressure data for n-alkoxyethnol + water mixtures at 298.15 K. Indian J. Chem. 43A, 28–34 (2004)

    CAS  Google Scholar 

  34. Patterson, D.: Structure and thermodynamics of non-electrolyte mixtures. J. Solution Chem. 23, 105–120 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Nain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nain, A.K. Inversion of the Kirkwood–Buff Theory of Solutions: Application to Tetrahydrofuran + Aromatic Hydrocarbon Binary Liquid Mixtures. J Solution Chem 37, 1541–1559 (2008). https://doi.org/10.1007/s10953-008-9326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9326-7

Keywords

Navigation