Skip to main content

Advertisement

Log in

Automatic Classification of Heartbeats Using Wavelet Neural Network

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The electrocardiogram (ECG) signal is widely employed as one of the most important tools in clinical practice in order to assess the cardiac status of patients. The classification of the ECG into different pathologic disease categories is a complex pattern recognition task. In this paper, we propose a method for ECG heartbeat pattern recognition using wavelet neural network (WNN). To achieve this objective, an algorithm for QRS detection is first implemented, then a WNN Classifier is developed. The experimental results obtained by testing the proposed approach on ECG data from the MIT-BIH arrhythmia database demonstrate the efficiency of such an approach when compared with other methods existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clifford, G. D., Azuaje, F., and McSharry, P. E., Advanced methods and tools for ECG analysis. Boston/London: Artech ouse Publishing, 2006:384.

  2. de Chazal, P., O’Dwyer, M., and Reilly, R. B., Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51(7):1196–1206, 2004.

    Article  Google Scholar 

  3. Bortolan, G., Brohet, C., and Fusaro, S., Possibilities of using neural networks for ECG classification. J Electrocardiol 29(Supplement):10–16, 1996.

    Article  Google Scholar 

  4. Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185, 1999.

    Article  Google Scholar 

  5. Qin, S., Ji, Z., and Zhu, H., The ECG recording analysis instrumentation based on virtual instrument technology and continuous wavelet transform, Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, Mexico, September 17–21, 2003, pp. 3176–3179.

  6. Dickhaus, H., and Heinrich, H., Classifying biosignals with wavelet networks-a method for noninvasive diagnosis, IEEE Engineering in Medicine and Biology, September/October 1996, pp. 103–111.

  7. Lin, C.-H., Du, Y.-C., and Chen, T., Adaptive wavelet network for multiple cardiac arrhythmias recognition. Expert Syst Appl 34(4):2601–2611, 2008.

    Article  Google Scholar 

  8. Wang, Y., Zhu, Y.-S., Thakor, N. V., and Xu, Y.-H., A short-time multifractal approach for arrhythmias detection based on fuzzy neural network. IEEE Trans Biomed Eng 48(9):989–995, 2001.

    Article  Google Scholar 

  9. Lin, C.-H., Classification enhancible grey relational analysis for cardiac arrhythmias discrimination. Med Biol Eng Comput 44(4):311–320, 2006.

    Article  Google Scholar 

  10. Mazel, D. S., and Hayes, M. H., Using iterated function systems to model discrete sequences. IEEE Trans Signal Processing 40(7):1724–1734, 1992.

    Article  MATH  Google Scholar 

  11. Vines, G., and Hayes, M. H., III, Nonlinear address maps in a one-dimensional fractal model. IEEE Trans Signal Process 41(4):1721–1724, 1993.

    Article  Google Scholar 

  12. Barnsley, M., Fractal functions and interpolation. Constr Approx 2:303–329, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  13. Barnsley, M., Fractals everywhere. Academic, New York, 1988.

    MATH  Google Scholar 

  14. Lin, C.-H., and Wang, C.-H., Adaptive wavelet networks for power quality detection and discrimination in a power system. IEEE Trans Power Delivery 21(3):1106–1113, 2006.

    Article  Google Scholar 

  15. Hadj Slimane, Z., and Bereksi Reguig, F., New algorithme for QRS complex detection. J Mech Med Biol (JMMB) 5(4):507–515, 2005.

    Article  Google Scholar 

  16. So, H. H., and Chan, K. L., Development of QRS detection method for real-time ambulatory cardiac monitor, Proc 19th Annu Int Conf IEEE EMBS. Chicago, USA, 289–292, 1997.

  17. Zhang, J., Walter, G. G., Miao, Y., and Lee, W. N. W., Wavelet neural networks for function learning. IEEE Trans Signal Processing 43:1485–1497, 1995.

    Article  Google Scholar 

  18. MIT BIH Arrhythmia Database Directory. Physiobank Archive Index, MIT-BIH Arrhythmia Database. Available: < http://www.physionet.org/physiobank/database >.

  19. Zhang, Q., Using wavelet network in nonparametric estimation. IEEE Trans on Neural Networks 8(2):227–236, 1997.

    Article  Google Scholar 

  20. Basheer, I. A., and Hajmeer, M., Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Meth 43:3–31, 2000.

    Article  Google Scholar 

  21. Haykin, S., Neural networks: a comprehensive foundation. Macmillan, New York, 1994.

    MATH  Google Scholar 

  22. Szu, H. H., et al., Neural network adaptive wavelets for signal representation and classification. Optical eng 31(9):1907–1916, 1992.

    Article  Google Scholar 

  23. Yacine, O., Réseaux d’ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus. Thèse de Doctorat de l’UNIVERSITÉ PIERRE ET MARIE CURIE (PARIS VI). Spécialité ROBOTIQUE, 1998.

  24. Cheng, W., et al., Classification of ECG complexes using self-organizing CMAC. J Meas 42:399–707, 2009.

    Article  Google Scholar 

  25. Vargas, F., Lettnin, D., de Castro, M. C. F., and Macarthy, M., Electrocardiogram pattern recognition by means of MLP network and PCA: a case study on equal amount of input signal types, Proceedings of the VII Brazilian Symposium on Neural Networks, 2002.

  26. Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185, 1999.

    Article  Google Scholar 

  27. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., and Sörnmo, L., Clustering ECG complexes using Hermite functions and self organizing maps. IEEE Trans Biomed Eng 47(7):838–848, 2000.

    Article  Google Scholar 

  28. Fernández-Delgado, M., and Ameneiro, S. B., MART: a multichannel ART based neural network. IEEE Trans Neural Netw 9(1):139–150, 1998.

    Article  Google Scholar 

  29. Linh, T. H., Osowski, S., and Stodolski, M., On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans Instrum Meas 52:1224–1231, 2003.

    Article  Google Scholar 

  30. Güler, I., and Übeyli, E. D., ECG beat classifier designed by combined neural network model. Pattern Recognit 38(2):199–208, 2005.

    Google Scholar 

  31. Ubeyli, E. D., Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Comput Meth Programs Biomed 93:313–321, 2009.

    Article  Google Scholar 

  32. Osowski, S., and Linh, T. H., ECG beat recognition using fuzzy hybrid neural network. IEEE Trans Biomed Eng 48:1265–1271, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhwane Benali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benali, R., Bereksi Reguig, F. & Hadj Slimane, Z. Automatic Classification of Heartbeats Using Wavelet Neural Network. J Med Syst 36, 883–892 (2012). https://doi.org/10.1007/s10916-010-9551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9551-7

Keywords

Navigation