Skip to main content

Advertisement

Log in

Advances in Optical Spectroscopy and Imaging of Breast Lesions

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and treatment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

MRI:

magnetic resonance imaging

NIR:

near infrared

FTIR:

Fourier transform infrared spectroscopy

NIRA:

near infrared autofluorescence

CPLS:

cross polarized light scattering

CW:

continuous wave

ROC:

receiver operating characteristic

AUC:

area under curve

RWT:

random walk theory

PTB:

Physikalich.-Techniche-Bundesanstalt

IDC:

invasive ductal carcinoma

TBV:

total blood volume

TOAST:

temporal optical absorption and scattering tomography

FEM:

finite-element model

DOS:

diffuse optical spectroscopy

DCE-MRI:

dynamic contrast enhanced magnetic resonance imaging

TOI:

tissue optical index

References

  1. Carney PA, Kasales CJ, Tosteson ANA, Weiss JE, Goodrich ME, Poplack SP, et al. Likelihood of additional work-up among women undergoing routine screening mammography: the impact of age, breast density, and hormone therapy use. Prev Med 2004;39(1):48–55.

    Article  PubMed  Google Scholar 

  2. Hindle WH, Davis LWD, Wright D. Clinical value of mammography for symptomatic women 35 years of age and younger. Am J Obstet Gynecol 1999;180(6 Pt 1):1484–90.

    Article  PubMed  CAS  Google Scholar 

  3. Hata T, Takahashi H, Watanabe K, Takahashi M, Taguchi K, Itoh T, et al. Magnetic resonance imaging for preoperative evaluation of breast cancer: a comparative study with mammography and ultrasonography. J Am Coll Surg 2004;198(2):190–7.

    Article  PubMed  Google Scholar 

  4. Frank C, McCreery R, Redd D. Raman-spectroscopy of normal and diseased human breast tissues. Anal Chem 1995;67 5:777–83.

    Article  PubMed  CAS  Google Scholar 

  5. Frank C, Redd D, Gansler T, McCreery R. Characterization of human breast specimens with near-IR Raman spectroscopy. Anal Chem 1994;66(3):319–26.

    Article  PubMed  CAS  Google Scholar 

  6. Redd D, Feng Z, Yue K, Gansler T. Raman-spectroscopic characterization of human breast tissues—implications for breast-cancer diagnosis. Appl Spectrosc 1993;46(6):787–91.

    Article  Google Scholar 

  7. Manoharan R, Shafer K, Perelman L, Wu J, Chen K, Deinum G, et al. Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem Photobiol 1998;67:15–22.

    Article  PubMed  CAS  Google Scholar 

  8. Yu G, Xu X, Niu Y, Wang B, Song Z, Zhang C. Studies on human breast cancer tissues with Raman microspectroscopy. Spectroscopy and Spectral Analysis 2004;24(11):1359–62.

    PubMed  CAS  Google Scholar 

  9. Shafer-Peltier K, Haka A, Fitzmaurice M, Crowe J, Myles J, Dasari R, et al. Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J Raman Spectrosc 2002;33(7):552–63.

    Article  CAS  Google Scholar 

  10. Haka A, Shafer-Peltier K, Fitzmaurice M, Crowe J, Dasari R, Feld M. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci U S A 2005;102(35):12371–6.

    Article  PubMed  CAS  Google Scholar 

  11. Ci Y, Gao T, Feng J, Guo Z. Fourier transform infrared spectroscopic characterization of human breast tissue: implications for breast cancer diagnosis. Applied Spectrosc 1999;53(3):312–5.

    Article  CAS  Google Scholar 

  12. Dukor R, Liebman M, Johnson B. A new, non-destructive method for analysis of clinical samples with FT-IR microspectroscopy. Breast cancer tissue as an example. Cell Mol Biol 1998;44(1):211–7.

    PubMed  CAS  Google Scholar 

  13. Wallon J, Yan S, Tong J, Meurens M, Haot J. Identification of breast carcinomatous tissue by near-infrared reflectance spectroscopy. Applied Spectroscopy 1994;48(2):190–3.

    Article  Google Scholar 

  14. Yang Y, Celmer E, Koutcher J, Alfano R. UV reflectance spectroscopy probes DNA and protein changes in human breast tissues. J Clin Laser Med Surg 2001;19(1):35–9.

    Article  PubMed  Google Scholar 

  15. Yang Y, Celmer E, Koutcher J, Alfano RR. DNA and protein changes caused by disease in human breast tissues probed by the Kubelka–Munk spectral function. Photochem Photobiol 2002;75(6):627–32.

    Article  PubMed  CAS  Google Scholar 

  16. Yang Y, Katz A, Celmer E, Zurawska-Szczepaniak M, Alfano R. Fundamental differences of excitation spectrum between malignant and benign breast tissues. Photochem Photobiol 1997;66(4):518–22.

    PubMed  CAS  Google Scholar 

  17. Bigio I, Bown S, Briggs G, Kelley C, Lakhani S, Pickard D, et al. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt 2000;5(2):221–8.

    Article  PubMed  CAS  Google Scholar 

  18. Van Veen R, Amelink A, Menke-Pluymers M, Van der Pol C, Sterenborg HJ. Optical biopsy of breast tissue using differential path-length spectroscopy. Phys Med Biol 2005;50(11):2573–81.

    Article  PubMed  Google Scholar 

  19. Palmer G, Zhu C, Breslin T, Xu F, Gilchrist K, Ramanujam N. Comparison of multiexcitation fluorescence and diffuse reflectancy spectroscopy for the diagnosis of breast cancer. IEEE Trans Biomed Eng 2003;50(11):1233–42.

    Article  PubMed  Google Scholar 

  20. Alfano RR, Tata D, Cordero J, Tomashefsky P, Longo F, Alfano M. Laser-induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Electron 1984;20(12):1507–11.

    Article  Google Scholar 

  21. Liu C, Das B, Glassman W, Tang G, Yoo KM, Zhu H, et al. Raman, fluorescence, and time-resolved light-scattering as optical diagnostic-techniques to separate diseased and normal biomedical media. J Photochem Photobiol B Biol 1992;16(2):187–209.

    Article  CAS  Google Scholar 

  22. Gupta P, Majumder S, Uppal A. Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy. Lasers Surg Med 1997;21(5):417–22.

    Article  PubMed  CAS  Google Scholar 

  23. Hage R, Galhanone P, Zangaro R, Rodrigues K, Pacheco M, Martin A, et al. Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue. Lasers Med Sci 2003;18(3):171–6.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang G, Demos S, Alfano R. Far-red and NIR spectral wing emission from tissues under 532 nm and 632 nm photo-excitation. Lasers Life Sci 1999;9:1–16.

    Google Scholar 

  25. Demos S, Bold R, deVere White R, Ramsamooj R. Investigation of near infrared autofluorescence imaging for the detection of breast cancer. IEEE J Sel Top Quantum Electron. 2005;11 (4):791–98

    Article  CAS  Google Scholar 

  26. Garofalakis A, Zacharakis G, Filippidis G, Sanidas E, Tsiftsis D, Stathopoulos E, et al. Optical characterization of thin female breast biopsies based on the reduced scattering coefficient. Phys Med Biol 2005;50(11):2583–96.

    Article  PubMed  CAS  Google Scholar 

  27. Demos S, Savage H, Heerdt A, Schantz S, Alfano R. Time resolved degree of polarization for human breast tissue. Opt Commun 1996;124:439–42.

    Article  CAS  Google Scholar 

  28. Tadrous P, Siegel J, French PM, Shousha S, Lalani E, Stamp G. Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer. J Pathol 2003;199(3):309–17.

    Article  PubMed  Google Scholar 

  29. Mohanty SK, Ghosh N, Majumder SK, Gupta PK. Depolarization of autofluorescence from malignant and normal human breast tissues. Appl Opt 2001;40(7):1147–54.

    PubMed  CAS  Google Scholar 

  30. Johnson K, Chicken DW, Pickard D, Lee A, Briggs G, Falzon M, et al. Elastic scattering spectroscopy for intraoperative determination of sentinel lymph node status in the breast. J Biomed Opt 2004;9(6):1122–28.

    Article  PubMed  Google Scholar 

  31. Smith J, Kendall C, Sammon A, Christie-Brown J, Stone N. Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer. Technol Cancer Res Treat 2003;2(4):327–31.

    PubMed  CAS  Google Scholar 

  32. Haka A, Shafer-Peltier K, Fitzmaurice M, Crowe J, Dasari R, Feld MS. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res 2002;62(18):5375–80.

    PubMed  CAS  Google Scholar 

  33. Boudreau N, Myers C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 2003;5(3):140–6.

    Article  PubMed  CAS  Google Scholar 

  34. Vaupel P, Hockel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int J Oncol 2000;17(5):869–79.

    PubMed  CAS  Google Scholar 

  35. Williams K, Cowen R, Stratford I. Hypoxia and oxidative stress. Tumour hypoxia-therapeutic considerations. Breast Cancer Res 2001;3(5):328–31.

    Article  PubMed  CAS  Google Scholar 

  36. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen  and nutrient supply, and metabolic microenvironment of human tumors : a review. Cancer Res 1989;49:6449–65.

    PubMed  CAS  Google Scholar 

  37. Bottini A, Berruti A, Brizzi MP, Bersiga A, Generali D, Allevi G, et al. Pretreatment haemoglobin levels significantly predict the tumour response to primary chemotherapy in human breast cancer. Br J Cancer 2003;89(6):977–82.

    Article  PubMed  CAS  Google Scholar 

  38. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941–3.

    PubMed  CAS  Google Scholar 

  39. Dehghani H, Pogue BW, Poplack SP, Paulsen KD. Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results. Appl Opt 2003;42(1):135–45.

    PubMed  Google Scholar 

  40. Hattery D, Chernomordik V, Loew M, Gannot I, Gandjbakhche AH. Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue. JOSA A 2001;18:1523.

    Article  PubMed  CAS  Google Scholar 

  41. Li A, Zhang Q, Culver JP, Miller EL, Boas DA. Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography. Opt Lett 2004;29(3):256–8.

    Article  PubMed  CAS  Google Scholar 

  42. Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, et al. Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography. Proc Natl Acad Sci U S A 2003;100(21):12349–54.

    Article  PubMed  CAS  Google Scholar 

  43. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 2000;92(13):1081–7.

    Article  PubMed  CAS  Google Scholar 

  44. Kuszyk BS, Corl FM, Franano FN, Bluemke DA, Hofmann LV, Fortman BJ, Fishman EK. Tumor transport physiology: implications for imaging and image-guided therapy. AJR Am J Roentgenol 2001;177:747–53.

    PubMed  CAS  Google Scholar 

  45. Thomsen S, Tatman D. Physiological and pathological factors of human breast disease that can influence optical diagnosis. Ann N Y Acad Sci 1998;838:171–93.

    Article  PubMed  CAS  Google Scholar 

  46. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2000;2(1):26–40.

    Article  PubMed  CAS  Google Scholar 

  47. Gandjbakhche A. (2001). Diffused optical imaging and spectroscopy, in vivo. C R Acad Sci Ser IV:1073–79.

  48. Gandjbakhche AH, Nossal R, Bonner RF. Resolution limits for optical transillumination of abnormalities deeply embedded in tissues. Med Phys 1994;21:185–91.

    Article  PubMed  CAS  Google Scholar 

  49. Pogue B, Jiang S, Dehghani H, Kogel C, Soho S, Srinivasan S, et al. Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J Biomed Opt 2004;9:541–52.

    Article  PubMed  CAS  Google Scholar 

  50. Torricelli A, Spinelli L, Pifferi A, Taroni P, Cubeddu R, Danesini G. Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multi-wavelength time-resolved optical mammography. Opt Express 2003;11:853–967.

    Article  PubMed  Google Scholar 

  51. Corlu A, Choe R, Durduran T, Lee K, Schweiger M, Arridge SR, et al. Diffuse optical tomography with spectral constraints and wavelength optimization. Appl Opt 2005;44(11):2082–93.

    Article  PubMed  Google Scholar 

  52. Hebden JC, Yates TD, Gibson A, Everdell N, Arridge SR, Chicken DW, et al. Monitoring recovery after laser surgery of the breast with optical tomography: a case study. Appl Opt 2005;44:1898–904.

    Article  PubMed  Google Scholar 

  53. Culver JP, Choe R, Holboke MJ, Zubkov L, Durduran T, Slemp A, et al. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys 2003;30(2):235–47.

    Article  PubMed  CAS  Google Scholar 

  54. Grosenick D, Moesta KT, Wabnitz H, Mucke J, Stroszczynski C, Macdonald R, et al. Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors. Appl Opt 2003;42(3):170–86.

    Google Scholar 

  55. Li A, Miller EL, Kilmer ME, Brukilacchio TJ, Chaves T, Stott J, et al. Tomographic optical breast imaging guided by three-dimensional mammography. Appl Opt 2003;42:5181–90.

    PubMed  Google Scholar 

  56. Pera VE, Heffer EL, Siebold H, Schütz O, Heywang-Köbrunner S, Götz L, et al. Spatial second derivative image processing: an application to optical mammography to enhance the detection of breast tumors. J Biomed Opt 2003;8:517–24.

    Article  PubMed  Google Scholar 

  57. Taroni P, Danesini G, Torricelli A, Pifferi A, Spinelli L, Cubeddu R. Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. J Biomed Opt 2004;9(3):464–73.

    Article  PubMed  Google Scholar 

  58. Barbour RL, Schmitz CH, Klemer DP, Pei Y, Graber HL. Design and initial testing of system for simultaneous dynamic optical tomographic mammography. In: Biomedical Optics Topical Meetings, 2004. Washington, DC: Optical Society of America; 2004. p. WD4.

  59. Jiang H, Xu Y, Iftimia N, Eggert J, Klove K, Baron L, et al. Three-dimensional optical tomographic imaging of breast in a human subject IEEE Trans. Med Imag 2001;20:1334–40.

    Article  CAS  Google Scholar 

  60. Chernomordik V, Hattery D, Pifferi A, Taroni P, Torricelli A, Valentini G, et al. A random walk methodology for quantification of the optical characteristics of abnormalities embedded within tissue-like phantoms. Opt Lett 2000;25:951.

    PubMed  CAS  Google Scholar 

  61. Chernomordik V, Hattery DW, Grosenick D, Wabnitz H, Rinneberg H, Moesta KT, et al. Quantification of optical properties of a breast tumor using random walk theory. J Biomed Opt 2002;7(1):80–7.

    Article  PubMed  Google Scholar 

  62. Rinneberg H, Grosenick D, Moesta KT, Mucke J, Gebauer B, Stroszczynski C, et al. Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo. Technol Cancer Res Treat 2005;4(5):483–96.

    PubMed  Google Scholar 

  63. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Moller M, Stroszczynski C, et al. Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography. Phys Med Biol 2004;49(7):1165–81.

    Article  PubMed  Google Scholar 

  64. Grosenick D, Wabnitz H, Rinneberg HH, Moesta KT, Schlag PM. Development of a time-domain optical mammograph and first in vivo applications. Appl Opt 1999;38(13):2927–43.

    Article  PubMed  CAS  Google Scholar 

  65. Yates T, Hebden JC, Gibson A, Everdell N, Arridge SR, Douek M. Optical tomography of the breast using a multi-channel time-resolved imager. Phys Med Biol 2005;50:2503–17.

    Article  PubMed  Google Scholar 

  66. Schmidt F, Fry M, Hillman E, Hebden J, Delpy D. A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instrum 2000;71:256–65.

    Article  CAS  Google Scholar 

  67. Arridge SR, Schweiger M. Image reconstruction in optical tomography. Philos Trans R Soc Lond Ser B Biol Sci 1997;352(1354):717–26.

    Article  CAS  Google Scholar 

  68. Arridge S, Hebden J, Schweiger M, Schmidt F, Fry M, Hillman E, et al. A method for 3D time-resolved optical tomography. Int J Imaging Syst Technol 2000;11:2–11.

    Article  Google Scholar 

  69. McBride TO, Pogue BW, Jiang J, Österberg UL, Paulsen KD. A parallel-detection frequency-domain near infrared tomography system for hemoglobin imaging of the breast in vivo. Rev Sci Instrum 2001;72:1817–24.

    Article  CAS  Google Scholar 

  70. Jakubowski DB, Cerussi AE, Bevilacqua F, Shah N, Hsiang D, Butler J, et al. Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study. J Biomed Opt 2004;9(1):230–8.

    Article  PubMed  Google Scholar 

  71. Pogue BW, Zhu H, Nwaigwe C, McBride TO, Osterberg UL, Paulsen KD, et al. Hemoglobin imaging with hybrid magnetic resonance and near-infrared diffuse tomography. Adv Exp Med Biol 2003;530:215–24.

    PubMed  CAS  Google Scholar 

  72. Srinivasan S, Pogue BW, Brooksby B, Jiang S, Dehghani H, Kogel C, et al. Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction. Technol Cancer Res Treat 2005;4(5):513–26.

    PubMed  Google Scholar 

  73. Chance B, Nioka S, Zhang J, Conant EF, Hwang E, Briest S, et al. Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study. Acad Radiol 2005;12(8):925–33.

    Article  PubMed  Google Scholar 

  74. Conover DL, Fenton BM, Foster TH, Hull EL. An evaluation of near infrared spectroscopy and cryospectrophotometry estimates of haemoglobin oxygen saturation in a rodent mammary tumour model. Phys Med Biol 2000;45(9):2685–700.

    Article  PubMed  CAS  Google Scholar 

  75. Simick MK, Jong R, Wilson B, Lilge L. Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk. J Biomed Opt 2004;9(4):794–803.

    Article  PubMed  Google Scholar 

  76. Wang LV. Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography. Dis Markers 2004;19:123–38.

    Google Scholar 

  77. Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR. PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol 1996;23:717.

    Article  PubMed  CAS  Google Scholar 

  78. Zhu Q, Huang M, Chen N, Zarfos K, Jagjivan B, Kane M, et al. Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. Neoplasia 2003;5 5:379–88.

    PubMed  Google Scholar 

  79. Gulsen G, Yu H, Wang J, Nalcioglu O, Merritt S, Bevilacqua F, et al. Congruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors. Technol Cancer Res Treat 2002;1(6):497–505.

    PubMed  Google Scholar 

  80. Ntziachristos V, Yodh AG, Schnall MD, Chance B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 2002;4:347.

    Article  PubMed  Google Scholar 

  81. Vishwanath K, Pogue B, Mycek MA. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Phys Med Biol 2002;47(18):3387–405.

    Article  PubMed  Google Scholar 

  82. Goertzen AL, Meadors AK, Silverman RW, Cherry SR. Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 2002;47:4315.

    Article  PubMed  Google Scholar 

  83. Pogue BW, Paulsen KD. High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information. Opt Lett 1998;23:1716.

    PubMed  CAS  Google Scholar 

  84. Vauhkonen M, Vadasz D, Kaipio JP, Somersalo E, Karjalainen PA. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imag 1998;17:285.

    Article  CAS  Google Scholar 

  85. Borsic A, Lionheart WRB, McLeod CN. Generation of anisotropic-smoothness regularization filters for EIT. IEEE Trans Med Imag 2002;21:579.

    Article  Google Scholar 

  86. Ouyang X, Wong WH, Johnson VE, Hu X, Chen C. Incorporation of correlated structural images in PET image reconstruction. IEEE Trans Med Imag 1994;13:627

    Article  CAS  Google Scholar 

  87. Glidewell M, Ng KT. Anatomically constrained electrical impedance tomography for anisotropic bodies via a two-step approach. IEEE Trans Med Imag 1995;14:498.

    Article  CAS  Google Scholar 

  88. Dickin F, Wang M. Electrical resistance tomography for process tomography. Meas Sci Technol 1996;7:247

    Article  CAS  Google Scholar 

  89. Loke MH. (1997). Electrical imaging surveys for environmental and engineering studies.

  90. Brooksby B, Jiang S, Dehghani H, Pogue BW, Paulsen KD, Weaver J, et al. Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate MR structure. J Biomed Opt 2005;10(5):51504.

    Article  Google Scholar 

  91. Hsiang D, Shah N, Yu H, Su M, Cerussi A, Butler J, et al. Coregistration of dynamic contrast enhanced MRI and broadband diffuse optical spectroscopy for characterizing breast cancer. Technol Cancer Res Treat 2005;4(5):549–58.

    PubMed  Google Scholar 

  92. Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 2000;35(8):479–85.

    Article  PubMed  CAS  Google Scholar 

  93. Weissleder R, Tung C, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999;17:375–8.

    Article  PubMed  CAS  Google Scholar 

  94. Hutchinson CL, Lakowicz JR, Sevickmuraca EM. Fluorescence lifetime-based sensing in tissues—a computational study. Biophys J 1995;68(4):1574–82.

    Article  PubMed  CAS  Google Scholar 

  95. Mordon S, Devoisselle JM, Maunoury V. In-vivo pH measurement and imaging of tumor-tissue using a pH-sensitive fluorescent-probe (5,6-carboxyfluorescein)—instrumental and experimental studies. Photochem Photobiol 1994;60(3):274–9.

    PubMed  CAS  Google Scholar 

  96. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19(4):316–17.

    Article  PubMed  CAS  Google Scholar 

  97. Kamalov VF, Struganova IA, Yoshihara K. Temperature dependent radiative lifetime of J-aggregates. J Phys Chem 1996;100:8640.

    Article  CAS  Google Scholar 

  98. Andrews R, Mah R, Da Silva L. The NASA smart probe project for real-time multiple-microsensor tissue recognition. SPIE Proceedings 2004;5326:92–7.

    Google Scholar 

  99. Zhu C, Labawy C, Burnside E, Harter J, Ramanujam N. (2005). Development of optical sensor for spectroscopic detection of breast cancer during needle biopsy. Lasers Surg Med 6(6 15 Suppl. 17).

Download references

Acknowledgments

The authors acknowledge the following agencies for support of their research in breast cancer: The California Breast Cancer Research Program and the Center for Biophotonics, an NSF Science and Technology Center, managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. This work was performed in part at Lawrence Livermore National Laboratory under the auspices of the U.S. Department of Energy under Contract W-7405-Eng-48. This work was supported by the Intramural Program of the National Institutes of Health, National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros G. Demos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demos, S.G., Vogel, A.J. & Gandjbakhche, A.H. Advances in Optical Spectroscopy and Imaging of Breast Lesions. J Mammary Gland Biol Neoplasia 11, 165–181 (2006). https://doi.org/10.1007/s10911-006-9022-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9022-4

Keywords

Navigation