Skip to main content

Advertisement

Log in

Pulse oximeter plethysmograph variation and its relationship to the arterial waveform in mechanically ventilated children

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

A Commentary to this article was published on 20 March 2012

Abstract

The variations induced by mechanical ventilation in the arterial pulse pressure and pulse oximeter plethysmograph waveforms have been shown to correlate closely and be effective in adults as markers of volume responsiveness. The aims of our study were to investigate: (1) the feasibility of recording plethysmograph indices; and (2) the relationship between pulse pressure variation (ΔPP), plethysmograph variation (ΔPOP) and plethysmograph variability index (PVI) in a diverse group of mechanically ventilated children. A prospective, observational study was performed. Mechanically ventilated children less than 11 years of age, with arterial catheters, were enrolled during the course of their clinical care in the operating room or in the pediatric intensive care unit. Real time monitor waveforms and trend data were recorded. ΔPP and ΔPOP were manually calculated and the relationships between ΔPP, ΔPOP and PVI were compared using Bland–Altman analysis and Pearson correlations. Forty-nine children were recruited; four (8%) subjects were excluded due to poor quality of the plethysmograph waveforms. ΔPP and ΔPOP demonstrated a strong correlation (r = 0.8439, P < 0.0001) and close agreement (Bias = 1.44 ± 6.4%). PVI was found to correlate strongly with ΔPP (r = 0.7049, P < 0.0001) and ΔPOP (r = 0.715, P < 0.0001). This study demonstrates the feasibility of obtaining plethysmographic variability indices in children under various physiological stresses. These data show a similarly strong correlation to that described in adults, between the variations induced by mechanical ventilation in arterial pulse pressure and the pulse oximeter plethysmograph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37(2):666–88. doi:10.1097/CCM.0b013e31819323c6.

    Article  PubMed  Google Scholar 

  2. Tibby SM, Murdoch IA. Monitoring cardiac function in intensive care. Arch Dis Child. 2003;88(1):46–52. doi:10.1136/adc.88.1.46.

    Article  PubMed  CAS  Google Scholar 

  3. Tibby SM, Hatherill M, Durward A, Murdoch IA. Are transoesophageal Doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med. 2001;27(1):201–5. doi:10.1007/s001340000795.

    Article  PubMed  CAS  Google Scholar 

  4. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691–9. doi:10.1097/01.CCM.0000114996.68110.C9.

    Article  PubMed  Google Scholar 

  5. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–73. doi:10.1378/chest.119.3.867.

    Article  PubMed  CAS  Google Scholar 

  6. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.

    PubMed  CAS  Google Scholar 

  7. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28(4):392–8. doi:10.1007/s00134-002-1211-z.

    Article  PubMed  Google Scholar 

  8. Durand P, Chevret L, Essouri S, Haas V, Devictor D. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med. 2008;34(5):888–94. doi:10.1007/s00134-008-1021-z.

    Article  PubMed  Google Scholar 

  9. Choi DY, Kwak HJ, Park HY, Kim YB, Choi CH, Lee JY. Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatr Cardiol. 2010;31(8):1166–70. doi:10.1007/s00246-010-9776-8.

    Article  PubMed  Google Scholar 

  10. de Souza Pereira, Neto E, Grousson S, Duflo F, Ducreux C, Joly H, Convert J, Mottolese C, Dailler F, Cannesson M. Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br J Anaesth. 2011;106(6):856–64. doi:10.1093/bja/aer090.

    Article  Google Scholar 

  11. Renner J, Broch O, Gruenewald M, Scheewe J, Francksen H, Jung O, Steinfath M, Bein B. Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia. 2011;66(7):582–9. doi:10.1111/j.1365-2044.2011.06715.x.

    Article  PubMed  CAS  Google Scholar 

  12. Cannesson M, Besnard C, Durand PG, Bohe J, Jacques D. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care. 2005;9(5):R562–8. doi:10.1186/cc3799.

    Article  PubMed  Google Scholar 

  13. Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, Lehot JJ. Does the Pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008;106(4):1189–94. doi:10.1213/ane.0b013e318167ab1f.

    Article  PubMed  Google Scholar 

  14. Natalini G, Rosano A, Franceschetti ME, Facchetti P, Bernardini A. Variations in arterial blood pressure and photoplethysmography during mechanical ventilation. Anesth Analg. 2006;103(5):1182–8. doi:10.1213/01.ane.0000202380.22997.24.

    Article  PubMed  Google Scholar 

  15. Natalini G, Rosano A, Taranto M, Faggian B, Vittorielli E, Bernardini A. Arterial versus plethysmographic dynamic indices to test responsiveness for testing fluid administration in hypotensive patients: a clinical trial. Anesth Analg. 2006;103(6):1478–84. doi:10.1213/01.ane.0000246811.88524.75.

    Article  PubMed  Google Scholar 

  16. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, Lehot JJ. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101(2):200–6. doi:10.1093/bja/aen133.

    Article  PubMed  CAS  Google Scholar 

  17. Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, Bastien O, Lehot JJ. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology. 2007;106(6):1105–11. doi:10.1097/01.anes.0000267593.72744.20.

    Article  PubMed  Google Scholar 

  18. Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, Lecarpentier Y. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274(2 Pt 2):H500–5.

    PubMed  CAS  Google Scholar 

  19. Shelley KH, Jablonka DH, Awad AA, Stout RG, Rezkanna H, Silverman DG. What is the best site for measuring the effect of ventilation on the pulse oximeter waveform? Anesth Analg. 2006;103(2):372–7. doi:10.1213/01.ane.0000222477.67637.17.

    Article  PubMed  Google Scholar 

  20. Shibasaki M, Inoue Y, Kondo N, Iwata A. Thermoregulatory responses of prepubertal boys and young men during moderate exercise. Eur J Appl Physiol Occup Physiol. 1997;75(3):212–8. doi:10.1007/s004210050150.

    Article  PubMed  CAS  Google Scholar 

  21. Papastamelos C, Panitch HB, England SE, Allen JL. Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol. 1995;78(1):179–84.

    PubMed  CAS  Google Scholar 

  22. Senzaki H, Akagi M, Hishi T, Ishizawa A, Yanagisawa M, Masutani S, Kobayashi T, Awa S. Age-associated changes in arterial elastic properties in children. Eur J Pediatr. 2002;161(10):547–51. doi:10.1007/s00431-002-1025-6.

    Article  PubMed  Google Scholar 

  23. Euliano N, Meka V, Melker R, Fuehrlein B (2005) Pulse oximetry data acquisition viewer (PODAV)—New Plethysmograph Processing Software. Society for Technology in Anesthesia Annual Meeting Abstracts

  24. McCanne S, Jacobson V (1993) The BSD packet filter: a new architecture for user-level packet capture. In: Proceedings of the USENIX Winter 1993 conference:2

  25. Desebbe O, Boucau C, Farhat F, Bastien O, Lehot JJ, Cannesson M. The ability of pleth variability index to predict the hemodynamic effects of positive end-expiratory pressure in mechanically ventilated patients under general anesthesia. Anesth Analg. 2010;110(3):792–8. doi:10.1213/ANE.0b013e3181cd6d06.

    Article  PubMed  Google Scholar 

  26. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4(5):282–9.

    Article  PubMed  CAS  Google Scholar 

  27. Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92(4):984–9.

    Article  PubMed  CAS  Google Scholar 

  28. Shelley KH. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg. 2007;105(6 Suppl):S31–6. doi:10.1213/01.ane.0000269512.82836.c9.

    Article  PubMed  Google Scholar 

  29. Berger S. Pulmonary artery catheters, children, and the twenty-first century. Pediatr Crit Care Med. 2001;2(3):286–7. doi:10.1097/00130478-200107000-00020.

    Article  PubMed  Google Scholar 

  30. Renner J, Broch O, Duetschke P, Scheewe J, Höcker J, Moseby M, Jung O, Bein B. Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery. British J Anaesth. 2012;108(1):108–15. doi:10.1093/bja/aer371.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the OR and PICU nursing staff, also the anesthesiologists, anesthesiology assistants and intensivists at BC Children’s Hospital who kindly facilitated our study. Thanks to Masimo® Corporation, Irvine, CA, USA for use of hardware and software. The authors have no financial relationship with Massimo® Corporation. We received an unrestricted loan of equipment and software from them, however, they had no input into the manuscript or the decision to publish.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Chandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandler, J.R., Cooke, E., Petersen, C. et al. Pulse oximeter plethysmograph variation and its relationship to the arterial waveform in mechanically ventilated children. J Clin Monit Comput 26, 145–151 (2012). https://doi.org/10.1007/s10877-012-9347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-012-9347-z

Keywords

Navigation