Skip to main content
Log in

Nanostructured VOx/VO(PO4)n Using Solid-State Vanadium Containing Phosphazene Precursors: A Useful Potential Bi-Catalyst System

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Pyrolysis of molecular precursors containing vanadium organometallic and cyclic phosphazene affords mixtures of nanostructured vanadium oxides and pyrophosphates. The products from the molecular precursor [N3P3(OC6H5)5OC5H4N·Cp2VCl][PF6], and of the mixtures Cp2VCl2/N3P3(OC6H4CHO)6 and Cp2VCl2/[NP(O2C12H8)]3 in several relationships 1:1, 1:3, 1:5 and 1:10, pyrolyzed under air and at 400 °C and 600 °C, give mixtures mainly V2O5 and VO(PO3)2. Varied morphologies depending on the molecular or mixture precursors and of the temperature used were observed. Nanowires with diameters of approximate 40 nm were observed for the 1:5 Cp2VCl2/[NP(O2C12H8)]3 mixture pyrolyzed at 400 °C, while the same mixture pyrolyzed at 600 °C, affords xerogels of V2O5. The products were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), infra-red (IR) spectroscopy and X-ray diffraction (XRD). The preparation method constitutes a novel one-pot solid-state way to nanostructured materials with potential applications both in oxidative dehydrogenation of light hydrocarbons with V2O5, as well as alkenes oxidations with VO(PO3)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. A. Chambers (2009). Adv. Mater. 21, 21.

    Article  Google Scholar 

  2. M. L. Kahn, A. Glaria, C. Pages, M. Monge, L. Macary, A. Maisonnat, and B. Chaudret (2009). J. Chem. Mater. 19, 4044.

    Article  CAS  Google Scholar 

  3. C. N. Rao, A. Muller, and A. K. Cheetham The Chemistry of Nanomaterials, chapter 5 (Wiley, VCH, Weinheim, 2004), p. 94.

    Book  Google Scholar 

  4. P. Davidson (2010). Comptes Redus Chemie 13, 142.

    Article  CAS  Google Scholar 

  5. D. Murphy, P. Christian, F. DiSalvo, and J. Waszczak (1979). Inorg. Chem. 18, 2800.

    Article  CAS  Google Scholar 

  6. W. Menezes, D. Reis, T. Benedetti, M. Oliveira, J. Soares, R. Torresi, and A. Zarbin (2009). J. Colloid Inter. Sci. 337, 586.

    Article  CAS  Google Scholar 

  7. F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper (1999). J. Am. Chem. Soc. 121, 8324.

    Article  CAS  Google Scholar 

  8. V. Lavayen, C. O’Dwyer, M. A. Santa Ana, S. B. Newcomb, E. R. Benavente, G. Gonzalez, and C. M. Sotomayor (2006). Phys.Stat. Sol 13, 3285.

    Google Scholar 

  9. V. Lavayen, C. O’Dwyer, G. Cardenas, G. Gonzalez, and C. M. Sotomayor (2007). Mater. Res. Bull. 42, 674.

    Article  CAS  Google Scholar 

  10. T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Loide, Y. Bando, and D. Golberg (2010). Adv. Mater. 22, 1.

    Article  Google Scholar 

  11. J. Min Baik, M. Hwa Kim, C. Larson, C. Yavuz, G. Stucky, A. Wodtke, and M. Moskovits (1998). Nano Lett. 9, 3980.

    Article  Google Scholar 

  12. S. Myung, M. Lee, G. Tae Kim, J. Sook, and S. Hong (2005). Adv. Mater. 17, 2361.

    Article  CAS  Google Scholar 

  13. C. O’Dwyer, V. Lavayen, D. Fuenzalida, H. Lozano, M. A. Santa Ana, E. Benavente, G. González, and C. Sotomayor (2008). Small 4, 990.

    Article  Google Scholar 

  14. I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossmeyer (2005). Sens. Act. B 106, 730.

    Article  Google Scholar 

  15. U. Schlencht, B. Guse, I. Raible, T. Voosmeyer and M. Burghard (2004). Chem. Comm. 2184.

  16. K. Takahashi, S. Limmer, Y. Wang, and G. Cao (2004). J. Phys. Chem. B 108, 9795.

    Article  CAS  Google Scholar 

  17. N. Pinna, M. Willinger, K. Weiss, J. Urban, and R. Schlogl (2003). Nano Lett. 3, 1131.

    Article  CAS  Google Scholar 

  18. H. Kaper, M. Willinger, I. Djerdj, S. Gross, M. Antonietti, and B. Smarsly (2008). J. Mater. Chem. 18, 5761.

    Article  CAS  Google Scholar 

  19. D. O’Dwyer, V. Navas, E. R. Lavayen, M. A. Benavente, G. Santa Ana, S. B. Gonzalez, C. Newcomb, and M. Sotomayor (2006). Chem. Mater. 18, 3016.

    Article  Google Scholar 

  20. D. O’Dwyer, V. Navas, E. R. Lavayen, M. A. Benavente, G. Santa Ana, S. B. Gonzalez, C. Newcomb, and M. Sotomayor (2007). Electrochem. Solid-State Lett. 10, A111.

    Article  Google Scholar 

  21. Y. Zhou, Z. Qiu, M. Lu, A. Zhang, and Q. Ma (2007). Mater. Lett. 61, 4073.

    Article  CAS  Google Scholar 

  22. L. Mao, C. Liu, and J. Li (2008). J. Mater. Chem. 18, 1640.

    Article  CAS  Google Scholar 

  23. H. Fei, M. Liu, H. Zhou, P. Sun, D. Ding, and T. Chen (2009). Solid State Sci. 11, 102.

    Article  CAS  Google Scholar 

  24. F. Sediri, F. Touati, and N. Gharbi (2006). Mater. Sci. Eng. B 129, 251.

    Article  CAS  Google Scholar 

  25. C. Mao, H. Pan, X. Wu, J. Zhu, and H. Chen (2006). J. Phys. Chem. B 110, 14709.

    Article  CAS  Google Scholar 

  26. N. Asim, S. Radiman, M. Yarmo, and M. Banaye (2009). Micro. Meso. Mater. 120, 397–401.

    Article  CAS  Google Scholar 

  27. C. Ramana, S. Utsunomiya, R. Ewing, and U. Becker (2006). Solid State Commun. 137, 645.

    Article  CAS  Google Scholar 

  28. Z. Zhang, Y. Gao, Z. Chen, J. Du, C. Cao, L. Kang, and H. Luo (2010). Langmuir 26, 1073.

    Google Scholar 

  29. C. Ramana, R. Smith, O. Hussain, C. Chusuei, and C. Julien (2005). Chem. Mater. 17, 1213.

    Article  CAS  Google Scholar 

  30. J. Kim, Y. Hong, and H. Uhm (2007). Surf. Coat. Technol. 201, 5114.

    Article  CAS  Google Scholar 

  31. S. Pol, V. Pol, and A. Gedanken (2004). Chem. Eur. J. 10, 4467.

    Article  CAS  Google Scholar 

  32. A. Odani, V. Pol, S. Pol, M. Koltypin, A. Gedanken, and D. Aurbach (2006). Adv. Mater. 18, 1431.

    Article  CAS  Google Scholar 

  33. C. Wu, H. Wei, B. Ning, and Y. Xie (2010). Adv. Mater. 22, 1.

    Article  CAS  Google Scholar 

  34. J. Stelzer, J. Caro, D. Habel, E. Feike, H. Schubert, M. Fait, and G. Hidde (2004). Chem. Eng. Technol. 27, 839.

    Article  CAS  Google Scholar 

  35. G. Kryukova, G. Zenkovets, and V. Parmon (2000). React. Kinet. Catal. Lett. 71, 173.

    Article  CAS  Google Scholar 

  36. C. Hess (2009). Chem. Phys. Chem. 10, 319.

    Article  CAS  Google Scholar 

  37. V. Augustyn and B. Dunn (2010). Comp. Rend. Chemie 13, 130.

    Article  CAS  Google Scholar 

  38. S. H. Ng, S. Y. Chew, J. Wang, D. Wexler, Y. Tournaye, K. Konstantinov, and H. K. Liu (2007). J. Power Sources 174, 1032.

    Article  CAS  Google Scholar 

  39. O. Ovsiter and E. V. Kondratenko (2100). Chem. Comm. 4974.

  40. G. Carja, Y. Kameshima, and K. Okada (2008). Micropor. Mesopor. Mater. 115, 54.

    Article  Google Scholar 

  41. Y.-M. Liu, W.-F. Feng, T-Ch Li, H.-Y. He, W.-L. Dai, W. Huang, and Cao. K. N. Fan (2006). J. Catal. 239, 12.

    Google Scholar 

  42. X. Gao and J. Xu (2006). Appl. Clay Sci. 33, 1.

    Article  CAS  Google Scholar 

  43. Sh Kasaoka, E. Sasaoka, and H. Iwayama (1898). Bull Chem. Soc. Jpn. 62, 1226.

    Article  Google Scholar 

  44. C. Díaz and M. L. Valenzuela (2005). J. Chil. Chem. Soc. 50, 417.

    Article  Google Scholar 

  45. C. Díaz, P. Castillo, and M. L. Valenzuela (2005). J. Cluster Sci. 16, 15.

    Article  Google Scholar 

  46. C. Díaz and M. L. Valenzuela (2006). J. Inorg. Organomet P. Mater. 16, 123.

    Article  Google Scholar 

  47. C. Díaz and M. L. Valenzuela (2006). Macromolecules 39, 103.

    Article  Google Scholar 

  48. C. Díaz and M. L. Valenzuela (2006). J. Inorg. Organomet P. Mater. 16, 216.

    Google Scholar 

  49. C. Díaz and M. L. Valenzuela (2006). J. Inorg. Organomet P. Mater. 16, 419.

    Article  Google Scholar 

  50. C. Diaz, M. L. Valenzuela, E. Spodine, Y. Moreno, and O. Peña (2007). J. Cluster Sci. 18, 831.

    Article  CAS  Google Scholar 

  51. C. Diaz, M. L. Valenzuela, D. Bravo, V. Lavayen, and C. O’Dwyer (2008). Inorg. Chem. 47, 11561.

    Article  CAS  Google Scholar 

  52. C. Diaz, M. L. Valenzuela, and S. Ushak (2008). J. Cluster Sci. 19, 471.

    Article  CAS  Google Scholar 

  53. J. Jimenez, A. Laguna, M. Benouazzane, J. A. Sanz, C. Diaz, M. L. Valenzuela, and P. Jones (2009). Chem. Eur. J. 15, 13509.

    Article  CAS  Google Scholar 

  54. C. Díaz, M. L. Valenzuela, L. Zuñiga, and C. O’Dwyer (2009). J. Inorg. Organometallic P. 19, 507.

    Article  Google Scholar 

  55. A. A. Rownaghi, Y. H. Taufiq-Yap, and F. Rezaei (2009). Chem. Eng. J. 155, 514.

    Article  CAS  Google Scholar 

  56. N. Dropka, V. N. Kalevaru, A. Martin, D. B. Linke, and B. Lucke (2006). J. Catal. 240, 8–17.

    Article  CAS  Google Scholar 

  57. M. P. Casaletto, L. Lissi, G. Mattogno, P. Patrono, and G. Ruoppolo (2004). Surf. Interface Anal. 36, 737.

    Article  CAS  Google Scholar 

  58. E. S. Takeuchi, A. C. Marschilok, K. Tanzil, E. Kozarsky, Sh Zhu, and K. J. Takeuchi (2009). Chem. Mater. 21, 493.

    Article  Google Scholar 

  59. G. A. Carriedo, L. Fernadez-Catuxo, F. G. Garcia Alonso, P. Gomez-Elipe, and P. Gonzalez (1996). Macromolecules 29, 5320.

    Article  CAS  Google Scholar 

  60. J. Livage (1991). Chem. Mater. 3, 578.

    Article  CAS  Google Scholar 

  61. L. Kong, Z. Liu, M. Shao, Q. Xie, W. Yu, and Y. Qian (2004). J. Solid State Chem. 177, 690.

    Article  CAS  Google Scholar 

  62. V. Petrov, N. T. Pantelis, E. M. Bozin, J. L. Billinge, T. Vogt, and G. Kanatzidis (2002). J.Am. Chem. Soc. 124, 10157.

    Article  Google Scholar 

  63. N. Ding, Sh Liu, X. Feng, H. Gao, X. Fang, J. Xu, W. Tremel, and I. Lieberwirth (2009). Cryst. Growth Des. 9, 1724.

    Google Scholar 

  64. C. O’Dwyer, V. Lavayen, D. A. Tanner, S. B. Newcomb, E. R. Benavente, G. Gonzalez, and C. M. Sotomayor (2009). Adv. Func. Mater. 19, 1736.

    Article  Google Scholar 

  65. W. G. Meneses, D. M. Reis, M. M. Oliveira, J. F. Soares, and A. J. G. Zarbin (2007). Chem. Phys. Chem. 445, 293.

    Google Scholar 

  66. M. Roppolo, Ch B Jacobs, Sh Upreti, N. A. Chernova, and M. S. Whittingham (2008). J Mater. Sci. 43, 4742.

    Article  CAS  Google Scholar 

  67. M. Corbiere, J. Beerens, and R. B. Lennox (2005). Chem. Mater. 17, 5774.

    Article  Google Scholar 

Download references

Acknowledgment

Financial support by FONDECYT (project 1085011) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Díaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, C., Valenzuela, M.L., Yutronic, N. et al. Nanostructured VOx/VO(PO4)n Using Solid-State Vanadium Containing Phosphazene Precursors: A Useful Potential Bi-Catalyst System. J Clust Sci 22, 693–704 (2011). https://doi.org/10.1007/s10876-011-0415-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0415-1

Keywords

Navigation